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Abstract: 

 

This paper describes a working computational model of language acquisition, which learns the word 
sound segmentation, syntax and semantics of productive language. The learning model is based on a 
Bayesian cognitive linguistic model of language. It can be seen running at 
http://www.bayeslanguage.org/demo/model , learning a vocabulary of about 40 words from a 
starting point of no linguistic knowledge, using 800 examples of generated learning data. 

The model is robust, and is expected to scale well to larger vocabularies and complex syntax. It 
agrees with data on first language acquisition, including: (a) fast, robust learning of language; (b) an 
initial single-word learning phase (c) subsequent learning of productive constructions; and (d) ‘verb 
island’ learning of individual verbs before learning regular syntax.  

The model is capable, for one reason: it has a simple mathematical basis, in a Bayesian theory of 
learning and inference. It can be proven that the model works. 

Many computational models of language learning either do not learn word meanings, or assume that 
the learner starts with some linguistic knowledge; so they can only be compared with selected aspects 
of first language acquisition. Two models which are more nearly complete are the models of 
Beekhuizen et al. [2014, 2015] and Abend et al. [2019]. This model is compared with those models.  
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1. Introduction 

First language acquisition has long been a key challenge for 
cognitive science, as emphasised by Chomsky [1965, 1980]. 
Even today there are very few working computational 
models of language acquisition which are near to complete, 
in meeting all the main requirements for language learning - 
learning word segmentation, semantics, and productive 
syntax, from a starting point of no linguistic knowledge. 

The model of this paper is complete in that sense, and can 
be seen running online at 
http://www.bayeslanguage.org/demo/model. It learns the 
syntax, semantics and phonology of words from generated 
learning examples, starting with no linguistic knowledge, 
and learning rapidly as young children do. The words it 
learns support the productive generation and understanding 
of language. 

This is the first of three linked papers describing the model: 

1. ‘A computational model of language learning’: 
[Worden 2022a; this paper] describes the working 
and performance of the model, and compares it 
with other models of language learning. 

2. ‘A model of language acquisition: Foundations’ 
[Worden 2022b] describes the cognitive and 
mathematical foundations of the model. 

3. ‘A theorem of language learning’ [Worden 2022c]: 
derives a theorem in this model of language 
learning, which has important consequences for the 
scope of the model, for language diversity and for 
language change. 

The model is fast, robust and reliable – not requiring large 
computing resources of fine tuning of parameters. It 
reproduces the main features of early language learning, 
including fast learning, a ‘one word’ stage of learning, the 
later learning of productive constructs, and the ‘verb island’  
learning of the syntax of individual verbs before learning any 
regular syntax, observed by [Tomasello 2003, 2009]. 

The online demonstration shows the model learning about 
40 English words from about 800 learning examples. Scaling 
the model to larger vocabularies and more complex syntax 
has not yet been tested, but there are theoretical reasons to 
expect that the model can learn any construction in any 
language [Worden 2022c], and will scale well with increasing 
vocabulary. 

The model is based on the principles of cognitive linguistics 
[Langacker 1987; Fillmore 1982, 1995; Goldberg 1995; 
Croft 2001; Kay 2002; Sag, Boas & Kay 2012; Bybee 1985; 

Kaplan & Bresnan 1981; Lakoff 1987; Slobin 1986; Talmy 
2000; Hilpert 2014] and Bayesian Cognition and Learning  
[Rao et al 2002; Friston, Kilner & Harrison 2006; Chater & 
Oaksford 2008; Friston 2010;]. In the model, words, 
sentences and constructions are all represented as tree-like 
feature structures. 

I know of only two other computational models of language 
learning which are complete or near-complete in the same 
sense as this model. These are the models of Beekhuizen et 
al. [2014, 2015] and Abend et. al [2019]. This model is 
compared with those two models. 

The model of language learning rests on two key operations 
on feature structures – the operations of unification and 
generalisation. These operations are mathematically 
defined through Bayesian optimal inference, and are 
complementary to each other [Worden 2022b]. 

This is a very capable model of language learning, for one 
reason: it has a simple mathematical basis, in the Bayesian 
theory of learning and inference. It can be shown 
mathematically [Worden 2022c] why the model works. 

The learning model is available as a download from the 
demonstration site. This can be used to test the model, or 
to apply it to other languages. 

2. Principles of the Model 

The principles of the learning model are described in 
[Worden 2022b]. In summary: 

1. The model is defined at Marr’s [1982] Level 
Two: The structures and operations of the model 
are defined and implemented at Marr’s Level 2 of 
data structures and algorithms. The neural 
implementation of those operations (At Marr’s 
Level 3) is not defined. The model is not a 
connectionist neural net model. 

2. It is a Cognitive Linguistic Model: The model 
follows the principles of Cognitive Linguistics, in 
which language is closely related to other cognitive 
faculties of the primate brain. The core data 
structures of the model are tree-like feature 
structures, which represent the constructions of 
cognitive linguistics.  Feature structures are 
mappings between sounds and meanings. There is 
no intervening syntactic level, as there is in 
generative grammar [Chomsky 1980]. 

3. It is a Bayesian Model of Cognition: The two 
key operations on feature structures in the model  
are unification and generalisation. These are 

http://www.bayeslanguage.org/demo/model
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mathematically defined Bayesian maximum 
likelihood operations, using symbolic matching of 
the nodes of feature structures. Unification is used 
for language production and understanding 
[Gazdar et al 1985; Kaplan & Bresnan 1981; Kay 
2002]. Generalisation is the core operation for 
Bayesian optimal learning. 

4. Speakers and Listeners share a ‘common 
ground’ of understanding of the current 
situation and its context: The common ground 
[Tomasello 2002]is not represented in the model, 
but it allows a learner to infer (not always reliably) 
what a speaker is referring to. If the common 
ground was to be represented explicitly, it would be 
an object-based simulation of the current physical 
and social situation and context, built using the 
principles of Object-Oriented Programming 
(OOP). Such models are used in Embodied 
Cognitive Grammar (ECG) [Bergen & Chang 
20013]. All language use relates to the common 
ground. 

5. Learning examples are used to infer the feature 
structures for words: It is assumed that adult 
speakers have a stock of word feature structures, 
which they use by unification to produce 
utterances. These are used by a learner as learning 
examples. On each learning example, a learner 
hears an utterance and infers its meaning, as a 
feature structure. By generalising learning examples 
which contain the sounds of some word, the learner 
learns the feature structure for each word (or other 
construction) – and can then use word feature 
structures to speak and understand, by unification. 

3. Core Learning Mechanism 

This section outlines the core learning mechanism used by 
the model. Further details are given in the Appendix, and in 
[Worden 2022b]. 

In the model, feature structures represent the sounds, 
meaning and syntax of any word or other construction; 
grammar is fully lexicalised. Utterances are produced or 
understood by unifying the feature structures for 
constructions – as has been done in computational 
linguistics for many years [Gazdar et al 1985; Kaplan & 
Bresnan 1981; Kay 2002]. 

The unification of two feature structures is defined as the 
smallest feature structure which contains them both as 
substructures. 

 
1 This holds as long as the word is not used in a nested context – 
as can be seen in the demonstration 

The learning model is based on an operation that is 
complementary to unification – the operation of 
generalisation. 

The generalisation of two feature structures is defined as 
the largest feature structure which they both contain as 
substructures [Worden 2022b]. 

When a child hears two utterances in which the same word 
is used, and correctly infers the speaker’s meaning, each 
utterance and its meaning can be represented as a feature 
structure – a learning example. Each learning example 
contains (as a substructure) the sounds of any word it uses, 
and its meaning. 

Then, the generalisation of these two learning examples will 
contain both the sounds of a shared word and its meaning1. 
It may contain a few other nodes and slot values, from 
random coincidences between the two examples – but it is 
a good first approximation to the feature structure for the 
word. When it is generalised with other learning examples 
containing the same word, any coincidental similarities 
which are not part of the word are rapidly removed. 

So the core mechanism for learning a word (or other 
construction) is to generalise together a small set of learning 
examples in which the word is used. As will be seen by 
running the model,  generalisation discovers the syntax of 
productive words, as well as their sounds and meanings.  

Generalising the learning examples containing a word, in the 
order in which they are encountered, is a fairly reliable 
learning mechanism; but in a small proportion of cases, it 
can get off to a bad start, and does not recover. So serial 
learning is supplemented by another process, also using 
generalisation, which is closer to Bayesian optimal learning. 

When a small number of learning examples have been 
encountered for any word2, several different candidates for 
the word can be made – by permuting the learning examples 
in different random orders, and generalising them in those 
orders. Different orders give different starting words, and 
different final results. Choosing the best candidate (by 
criteria described in the appendix) gives robust and reliable 
learning of all word feature structures. This is called 
permutation learning. By permuting learning examples, 
and keeping the best learnt word result, it approximates 
Bayesian optimal learning from those examples. 

Permutation learning can only be used if a child is able to 
retain several learning examples for a word, for long enough 
to permute them; so it is not fully compatible with the ‘Now 
or Never’ bottleneck discussed in [Christiansen & Chater 
2016; Chater & Christiansen 2016]. More generally, it seems 
likely that the closer learning is to approach to Bayesian 

2 In the model shown in the demonstration, this number is set at 
20. 
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optimal learning, the more memory for learning examples is 
needed. 

4. Running the Model 

An on-line demonstration of the learning model can be seen 
at http://www.bayeslanguage.org/demo/model. I shall 
describe how the model runs by reference to that 
demonstration. 

You can inspect the feature structure for any word by 
selecting it from the ‘Words’ menu in the demonstration. 
For instance: 

 

Figure 1: The feature structure for a typical word 

The learning model learns these feature structures, starting 
with no knowledge of any words. In doing so, it learns the 
phonology, semantics and syntax of any word.  

The word ‘ran’ is a productive word, with a productivity 
denoted as [1,0]. This means that it requires one phrase or 
word to come before the word sound - describing any 
animate thing that can run - and it requires no words or 
phrases after it. It can be used productively to describe any 
animate thing running. 

The animate entity which precedes ‘ran’ is shown in the 
feature structure above – which is to be read in time order 
of its inputs, from top to bottom. The bottom ‘scene’ node 
is the meaning resulting from applying (unifying) the word. 
Adjectives have productivity [0,1], and simple transitive 
verbs have productivity [1,1]. Nouns have productivity [0,0]. 

A run of the learning model can be replayed by repeatedly 
pressing the ‘Auto-Learn’ button: 

 

Figure 2: Starting the learning demonstration 

When you first press the button, the model displays the 
words used to generate the learning examples which are the 
inputs to the learner: 

 

The model has a pre-linguistic sound learning phase, 
described in the next section. In this phase the learner 
understands no meanings, and uses the sounds of learning 
examples to learn the phonetic boundaries of words and 
phrases, by a Bayesian-like statistical learning algorithm. 
This phase models the earliest months of an infant’s life; so 
that when she is first able to infer the meanings of learning 
examples, she already knows the boundaries of spoken 
words. This phase has been  implemented in the model, but 
is not shown running. 

Each learning example is a sentence or phrase made by 
unifying feature structures for words selected at random 
from the generating set, using a context-free grammar (not 
known to the learner). Semantic restrictions of the words 
are applied by unification. These semantic restrictions 
remove some examples, leading to fairly sensible learning 
examples. 

When you next press the ‘Auto-Learn’ button, the model 
creates a cycle of 100 random learning examples, which are 
shown in the lower screen.  

  

Because of the prior sound learning phase, the sounds of 
the learning examples can be segmented into words by the 
learner. The spelling of the words is phonetic, because the 
learner hears only phoneme-like units of sound.  

Each learning example is described by a feature structure, 
which contains the sounds of the example, and a meaning 
which the learner infers from the context. Words are learnt 
by generalising the feature structures for learning examples 
which contain their sounds.  

The model learns incrementally from the learning examples, 
stopping at the end of each cycle, and displaying the words 
that have been learnt. At the end of cycle 1 it shows: 

 

http://www.bayeslanguage.org/demo/model
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In this first cycle, when almost no words have been learnt, 
each word is learnt in an unproductive [0,0] form, because 
this learning requires no knowledge of any other words.  

When some words are known, each learning example can be 
partly parsed by unifying it with feature structures for the 
known words. This replaces those word sounds by their 
meanings. By generalising these partly parsed examples, a 
productive word can be promoted to its more productive 
forms. Productive forms of words, which contain 
subsumption links, are learnt because generalisation of the 
parsed learning examples finds the subsumption links. 

For instance, after 700 examples: 

 

After each learning cycle, you can use the model menus to 
show: 

• What has been learned so far 

• How it has been learned 

Use the ‘Learning’ menu to display the feature structure for 
any word that has been learnt so far. Learnt words are 
grouped by their learned productivity: 

 

Figure 3: Menu to show the feature structures of words that have been 
learnt 

Selecting ‘r-a-n’ from the Productivity [1,1] sub-menu will 
show the feature structure for the word, as it has been learnt. 
This is not the feature structure that was used to make the 
learning examples, but is the feature structure learnt from 
them. The two are usually identical, or very similar. 

The representations of the meaning of words are simplified 
compared to the full meanings of words known by adults, 
which include many social and other associations. These 
associations could also be learned by the same learning 
mechanism. The choices of slots and slot values in the 
model are simplified, loosely following the work of 
Jackendoff [] and others. Had the choices of slots been 
different, the same mechanisms of unification and 
generalisation learning would still work.   

You can see how generalisation learns any word by showing 
the word from the ‘Learn’ menu, pressing the ‘Learn’ 
button, then repeatedly pressing the ‘Step’ button. This will 
show feature structures for a few learning examples 
containing the word, and the results of generalising those 
feature structures together. You will see how generalisation 
projects out the sounds and meanings which are part of the 
word, and throws away other parts.  

The learner starts with no knowledge of the structures, 
meanings or syntactic categories of words.  The only initial 
knowledge of the learner is: 

1. The segmentation of sounds into words, as learnt 
in the pre-linguistic phase 

2. A set of node types, slots and slot values with which 
to represent the meanings of situations. 

3. An ability to infer the meaning that a speaker 
expresses, from the context of ‘common ground’, 
with limited reliability. 

5. Performance of the Model 

There are two main measures of the performance of the 
learning model: 

1. The speed with which it learns – how many learning 
examples it needs to learn any word or construction 

2. The accuracy of its learning – how closely the learnt 
word feature structures resemble those used to 
make learning examples. 

By each of these measures, the model performs well. 

The number of words learnt of each productivity, as a 
function of the number of cycles of 100 learning examples, 
is shown below for a typical run of the program: 

 

 

 

Figure 5 : number of words learnt of different productivities, as a 
function of the number of cycles of 100 learning examples.  

In this run of 800 learning examples, the vocabulary used to 
make the examples was 45 words. Before the last cycle, 42 
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of these words had been learnt, with their correct 
productivities. 

The blue bars represent words of productivity [0,0] (which 
are mainly nouns); the red bars are the sum of words with 
productivities [0,1] and [1,0] (adjectives and intransitive 
verbs); while the green bars are words of productivity [1,1] 
(transitive verbs). Each word is learnt initially in its 
unproductive [0,0] form, before being promoted to its full 
productivity. 

Learning 42 words from 800 learning examples is a fast rate 
or learning, comparable to the rates at which children learn 
their first words. This fast learning is consistent with the 
Bayesian theory of learning described in [Worden 2022b], 
but is not consistent with the much slower learning of neural 
nets. 

The accuracy of learning word feature structures can be 
measured as follows: for any word, denote the ‘correct’ 
feature structure used to make learning examples by We; 
denote the learned word feature structure by Wl; and denote 
their generalisation by  Wg = (Wl ∩ We). If learning is 
accurate, these three feature structures are equal; but any 
errors in learning will lead to gaps in Wg. Denote the 
information content of the feature structures by Ig ,  Ie  and  
Il  respectively. Then define the percentage accuracy of a 
word to be 

A  = 100* Ig / max (Ie, Il) 

Any discrepancy between the two feature structures results 
in A being less than 100.  

The next figure is a scatter plot of the accuracy as a function 
of the strength of belief in each word, for a typical run of 
the learner, after 800 examples: 

 

There is a dot for each learned word; the horizontal axis is 
a measure of the strength of belief in the word; and the 
vertical axis is the measure A of its accuracy (measured 
against the ‘oracle’ of the words used to generate examples, 
which the learner does not know). If a learnt word either has 
extra information, or missing information, it scores less than 
100%. 

More than half the words are learnt with complete accuracy, 
and most of the others are learnt with accuracy around 80% 

(this may arise from a discrepancy of only one slot). Only 
three words have accuracy below 70%, and two of those 
words have only a low level of confidence. 

This level of accuracy is more than sufficient for use of the 
word feature structures to be used to produce and 
understand language. 

Other aspects of the performance and robustness of the 
model are: 

1. Parameter Insensitivity: While there are variable 
parameters which affect the running of the model 
(some of which are described in the appendix), the 
model does not depend on fine tuning of the 
parameters. It runs well with a wide range of 
parameter values. 

2. Fast execution: The speed of execution of the 
model cannot be seen in the online demonstration, 
which only replays a previous run of the model. 
Running the model to learn 40 words from 800 
learning examples only takes a few seconds on a 
small PC. The model is efficient because it learns 
words individually, not needing to learn any wide 
cross-language regularities; and because 
generalisation, used to learn each word, requires 
only simple discrete pattern matching. This may 
imply that a neural implementation of the model, in 
the human brain, could also be fast and efficient. 

3. Learning any construction in any language: To 
date, the model has only been tested on a small 
subset of English. However, there are reasons to 
suppose that generalisation learning will work for 
any construction in any language; these reasons are 
described in section 8 and in [Worden 2022c]. 
While the model will doubtless need refinement to 
learn languages very different from English, the 
prospects for successful learning of those languages 
by the model are good. 

6. Pre-Linguistic Learning of Word 
Boundaries 

If two learning examples both include the same word, 
generalisation of those learning examples makes a feature 
structure whose sounds include the sounds of the word, and 
does not include other sounds which the examples do not 
have in common. Generalisation works to project out the 
sounds of words – to learn about the segmentation of 
spoken sounds into words. 

However, pairwise generalisation of learning examples can 
project out not only the sounds of words, such as ‘r-a-n’, 
but also the sounds of non-words, such as ‘d-r-a-n’. If the 
model relied only on generalisation to project out the 
sounds of words, it would try to learn non-words, such as 
‘dran’. 
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The model assumes that in the early months of an infant’s 
life, before she can infer the meanings of any utterances, she 
can nevertheless use the statistical distributions of the 
sounds she hears to segment those sounds into words. 

The model does this by a simple form of statistical learning, 
described in the Appendix. When trained with the sounds 
of learning examples, this successfully learns more than 90% 
of the words used to make the examples, and learns very 
few non-words. 

The model’s statistical learning may or may not be a realistic 
model of the learning used by an infant. In any case, it shows 
that there is enough information in the distribution of 
sounds in the learning examples, to successfully learn the 
boundaries of words in the infant’s native language, before 
starting to learn their meanings. 

The point is not that this model of learning sound 
segmentation into words is the only model, or the best 
model – only that there must be models that learn sound 
segmentation, and do it well. Several capable models exist, 
such as the Chunk-Based Learning (CBL) model of 
[McAuley, Christiansen & Chater 2014] 

7. Other Models of First Language 
Acquisition 

In recent years there have been many computational models 
of language acquisition [Pinker 1984, 1989; Elman 1990; 
Niyogi 2002; Rohde 2002; Reali & Christiansen 2005; Chang 
Dell & Bock 2006; Chang 2008; Perfors  Tenenbaum & 
Wonnacott 2010; Alishahi & Stevenson 2010; Nematzadeh 
Fazly & Stevenson 2012;  Barak Fazly & Stevenson 2014; 
Ambridge & Blything 2015; Barak Floyd & Goldberg 2019; 
McAuley& Christiansen 2019]. Most of these are partial 
models, in that either: (a) they do not address some 
important aspect of language learning (such as the learning 
of word semantics, or of syntax), or (b) they assume that the 
learner already has some important linguistic knowledge at 
the start of the learning process. 

Being partial models of learning, these models cannot be 
compared with the full range of data about child language 
learning, starting from an initial non-linguistic state; they can 
only be compared with selected aspects of child learning 
data. 

There are very few models of language learning which can 
be said to be complete, in the sense that: 

1. They model the language learning process from a 
start of no linguistic knowledge 

2. They learn all the major aspects of a language – 
including segmentation of the sound stream into 
words, syntax, and semantics. 

The model of this paper is complete in this sense. I know of 
only two other working computational models which 
approach this level of completeness. These are the model of 

Beekhuizen et al. [2014, 2015] and the model of Abend et. 
al [2019]. I shall compare the model of this paper with those 
two models, before comparing it with a few selected other 
models. 

(A) The model of Beekhuizen et al: 

The model of [Beekhuizen et al. 2014, 2015] differs from 
the model of this paper in many respects, but at a high level 
there are similarities: 

• Language representations (including constructions 
and learning examples) are tree-like feature 
structures, which contain both sound and meaning, 
with no abstract syntax layer in between – as is 
usual in cognitive linguistic models. 

• Both models use partial understanding of learning 
examples using known words, before using the 
examples to learn from. 

• For parsing examples, Beekhuizen et al’s 
COMBINATION operation is compatible with 
unification, as used in the model of this paper. The 
other three parsing operations in Beekhuizen et al 
are not like unification, but are broadly compatible 
with the ‘partial parsing’ of each learning example, 
using known words, used in the model of this 
paper. 

• Both models use a best possible partial parse of 
each learning example, as the route to learning the 
productivity of constructions. 

• For learning, Beekhuizen et al’s ASSOCIATE 
operation (which they describe as ‘simple cross-
situational learning over the memory buffer’, 
looking for overlapping subgraphs) appears to be 
compatible with generalisation, as used in the 
model of this paper to learn constructions of zero 
productivity. 

• For learning, in the model of Beekhuizen et al., 
SYNTAGMATISATION creates a maximally 
concrete new and larger construction, and 
PARADIGMATISATION makes it more abstract 
(more productive). Combining these operations is 
similar to the way in which generalisation discovers 
subsumption links, as used in the model of this 
paper. 

• The model uses 2000 artificially generated learning 
examples to reach 95% comprehension of 
examples – which is similar to the performance of 
this model. The two models appear to learn at 
comparable speeds (although it is not stated how 
many words the Beekhuizen et al. model learns) 

A key difference between the two models is that the model 
of this paper has a concise mathematical basis in feature 
structures, unification and generalisation; and it has a 
rationale for this foundation, from Bayesian cognition and 
learning, as described in [Worden 2022b]. Beekhuizen at al. 
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do not present any mathematical basis for their model, but 
describe a set of algorithms for parsing and learning. These 
algorithms appear to be broadly compatible with the 
operations of unification  and generalisation; so the two 
models may well have similar structures and algorithms, 
with different names. 

The learning framework of Beekhuizen et al. depends on 
incrementing use counts of constructions, whereas the 
Bayesian model can learn with fairly small use counts, 
through a Bayesian learning criterion. I do not know 
whether this will lead to different rates of learning as the 
models scale to larger vocabularies. 

I have not yet been able to draw out contrasting qualitative 
predictions from the two models; but they both appear to 
learn constructions as direct mappings between word 
sounds and meanings, in a ‘verb island’- like manner 
[Tomasello 2003]. 

(B) The model of Abend et al: 

The differences between the model of Abend at al. [2019] 
and the model of this paper appear to be more deep-seated, 
and (unlike the model of Beekhuizen et al), their model 
cannot be said to be a similar the model of this paper, using 
different terminology. The models make distinctly different 
predictions for the course of learning. 

The most important differences are that the model of 
Abend et al. learns words in the syntactic categories of 
Combinatorial Categorial Grammar (CCG); and that the 
mapping between the sounds of a word and its meaning 
goes through an intermediate syntactic category, which is 
used for parsing and determines the functional form (λ-
expression) of the word meaning (the constants in the λ-
expression are word-specific.) 

In this regard, the model of Abend et al. resembles the 
models of generative grammar – in which an intermediate 
syntax layer is used – rather than the models of cognitive 
linguistics, which have no such layer. Unlike most models in 
generative grammar, the model of Abend et al. is not a 
parameter-setting model; it does not rely on sudden 
discovery of discrete parameter values. 

The model of Abend at al. uses a probabilistic grammar, 
which it learns by optimising the probability parameters of 
the grammar, incrementally as learning examples 
accumulate. I do not know how many parameters are varied 
at each learning step; but since the grammar is fully 
lexicalised, there must be at least some variable parameters 
for each word, as well as language-wide parameters.  

In the model, the semantics of each word are modelled as a 
λ-expression (depending on its syntactic category), which 
has a tree-like structure, much like a feature structure. 
Composing λ-expressions is a form of unification. The 
leaves of each λ-expression are atomic values like ‘doggie’, 
rather than sets of slots and values like ‘animate = true’, 

‘furry = true’, ‘legs = 4’ as in the model of this paper. This 
is a design choice by Abend et. al., and could be changed – 
if, for instance, they wanted their model to embody 
semantic constraints of words, such as: ‘only animate things 
can run’ (such constraints are learnt in the model of this 
paper). 

Although the two models are both Bayesian models, they 
are Bayesian in different senses: 

• The model of Abend et. al finds the Bayesian best 
fit of a whole (fully lexicalised) probabilistic 
grammar, by varying the real probability parameters 
of the grammar as learning examples accumulate. 

• Their model has three sets of parameters, making 
three products of probabilities: (a) PSYNTAX is a 
product of the probabilities of the rules of the 
syntax (function applications); (b) PMEANING is a 
product of the probabilities with which each of the 
leaf syntactic category child nodes is assigned a 
given meaning; (c) PWORDS is the product of the 
probabilities with which each meaning corresponds 
to a word in the sentence. The three sets of 
parameters are varied simultaneously to find the 
Bayesian best fit. 

• The model of this paper is based on the operations 
of unification and generalisation, which are 
individually and locally Bayesian operations. 
Unification is a discrete maximum likelihood 
pattern match, and finds the Bayesian most likely 
fit to a sequence of word sounds in a meaning 
context; while generalisation (of a small set of 
learning examples, all containing the sounds of 
some word) is also a discrete pattern match, finding 
the meaning of the word which accounts for the 
largest part of the meanings of the examples. 

So the learning model of Abend et al. is more global ‘whole 
language’ learning, and the model of this paper is more local 
and ‘word by word’. 

The model Abend et al. requires a set of real probability 
parameters to be optimised incrementally for each learning 
example, searching a multi-dimensional space of probability 
variables – unlike the model of this paper, where each 
learning example requires only discrete symbolic pattern-
matching operations. Discrete operations are usually 
computationally less expensive than searching a high-
dimension parameter space. 

Some other differences between the two models: 

1. The model of Abend et al. has been tested on real 
child-directed speech from the CHILDES 
database[MacWhinney 2000], rather than artificially 
generated learning examples. For this purpose, the 
CHILDES data has been semantically enriched.  
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2. The model assumes the correct segmentation of the 
sounds of learning examples into words – so it does 
not yet address the sound segmentation problem 
faced by a learning child. This limitation could be 
removed several ways – for instance, using the 
statistical learning word sounds as in this paper. 

3. The model learns regular syntax (such as SVO 
order for transitive verbs) at the same time as it 
learns the syntax of individual verbs. So the model 
of Abend et al. appears to be less compatible than 
the model of this paper with the ‘verb island’ form 
of learning observed by Tomasello [2003] and 
others. 

I have not been able to compare the overall learning rates 
between the two models. 

The difference (3) in rates and onsets of learning for regular 
syntax appears to be the main difference in predictions for 
the course of early learning, between the model of Abend et 
al. on the one hand, and the models of Beekhuizen et al. and 
the model of this paper, on the other hand. It would require 
more detailed comparisons between the models to turn this 
qualitative difference into a quantitative difference to be 
tested against data. 

(C) Other models of Language Learning 

This section does not attempt to survey models of language 
learning – only to mention a few that relate specifically to 
the model of this paper. 

As was described in section 6, the statistical model of pre-
language learning of word segmentation is not the only 
possible model or the best model. One of these models of 
learning word segmentation is the Chunk Based Learning 
model (CBL) of [Christiansen & Chater 2016]. 

The CBL model learns to segment language into ‘chunks’ 
which are words or short phrases, using the statistics of 
distributions of words in large corpora, or of the words 
heard by individual children in those corpora. The statistics 
CBL uses are Backward Transition Probabilities (BTP), 
using these to infer chunk boundaries, and so to produce a 
‘shallow parse’ of what a learning child hears. This shows 
that statistical learning techniques other than the simple 
learning used in this model can learn word segmentation, 
and can go further than that, learning the beginnings of 
syntax. 

Some other models of language learning use structure 
matching operations which are similar to generalisation. For 
instance, the ECG model of [Bailey et al 1987] uses a ‘model 
merge’ operation which is like generalisation applied to 
shallow feature structures, to project out semantic features.  

Several other models such as [Alishahi & Stevenson 2010] 
represent meanings as flat lists of feature values. In 
themodel of this paper, words are represented by tree-like 
feature structures, which may have semantic slots on any 

nodes; and all these slots can be learnt. It would seem that 
to account for both the semantics and syntax of most words, 
this more powerful form of learning is necessary. 

8. A Theorem of Language Learning 

This section shows that the learning mechanism can be used 
to learn any construction, in any language.  

Constructions in any language can be represented as feature 
structures, and can be used to produce or understand speech 
by unification. If, as in this model, constructions are learnt 
by generalisation of feature structures, then a fundamental 
theorem of language learning can be proved: 

Theorem: Suppose that speakers have a set of feature 
structures for words and other constructions, and produce 
sentences by unification of these feature structures. 
Suppose that learners hear those sentences, infer their 
meanings from the context, and learn constructions by 
generalising the resulting feature structures.  
 
Through this process, feature structures for words and 
other constructions are replicated accurately from speakers 
to learners.  

This result follows from the mathematical properties of  
unification and generalisation, because they are 
complementary operations. The result is proved in [Worden 
2022c], and it can be seen working in examples in the 
demonstration. The working of the theorem is illustrated in 
the figure below: 

 

 

Figure 6: How generalisation learning leads to the theorem of 
language learning. The stages are (1) feature structures for words are 
in speakers’ minds, including ‘boy’; (2)-(3) speaking by unifying the 
words; (4) the learner generalises the learning examples; (5) the result 

is the word ‘boy’ 

This shows how several learning examples, all using the 
word ‘boy’, all contain its sounds and its meaning as 
substructures. When those examples are generalised 
together, the feature structure for the word is recovered. 

The result has important consequences for the diversity and 
durability of the world’s languages.  

‘boy’ ‘runs’ ‘boy’‘small’

‘small boy’‘boy runs’

U U
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Here I note one consequence:  that the learning mechanism 
can be expected to work well for any construction, in any 
language. Through the theorem, any construction in any 
language will be passed faithfully from speakers to learners 
by generalisation learning. Initially, each construction is 
learnt in its unproductive [0,0] form. Later, as the 
construction appears in other learning examples with other 
known words, it is promoted to its most productive form, 
by the same generalisation mechanism (as in the 
demonstration). 

The theorem gives strong reasons to expect that this model 
of language learning will be applicable to any language. 
Other consequences of the theorem are discussed in 
[Worden 2022c]. 

Furthermore, the Bayesian Learning Theory implies that the 
learning of any construction will be optimally fast or nearly 
so, requiring only a few learning examples which include the 
construction - the smallest number of examples which are 
needed to learn it reliably. 

9. Learning Regular Grammar 

Since [Pinker 1984, 1989] much attention has been devoted 
[Perfors et al 2010; Ambridge et al 2012; Barak et al. 2014; 
Ambridge & Blything 2015; Goldberg 2019] to how 
children learn the approximate grammatical regularities of 
their language, analysing childrens’ propensity to make 
transient errors of over-regularisation, and their ability to 
handle novel words in examples like ‘She wugs the ball’. 

The model of this paper does not learn regular grammar. It 
learns in an entirely ‘verb island’ manner – learning that ‘hits’ 
has SVO order, and that ‘hugs’ has SVO order, and making 
no attempt to generalise to SVO order for novel verbs. It 
cannot yet be compared with learning data about 
grammatical regularities. 

The model can be extended to learn grammatical 
regularities, by the same mechanism of generalisation which 
it uses to learn individual words and constructions. As soon 
as a few transitive verbs like ‘hits’, ‘hugs’ and ‘eats’ have been 
learned, it is possible to generalise their feature structures 
together, to learn the regular SVO pattern. If the model was 
extended in this way, it would predict: 

• Grammatical regularities can only be learned after a 
significant number of words have been learned – so 
the learning of regularities must follow well after 
the learning of word islands – in agreement with 
child learning data [Tomasello 2003]. 

• Learning of any regular pattern (such as ‘-ed’ for the 
past tense) depends on the type frequency of verbs 
that obey that pattern; whereas the learning of 
irregular forms such as ‘went’ depends on the token 
frequency of that word. The tradeoff between the 
two kinds of learning (as seen, for instance, in 

errors of over-regularisation) depends in a complex 
way on token frequencies and type frequencies. 
Predictions will depend on detailed data and 
models. 

10. Discussion 

This paper has described a working computational model of 
language learning, which can be seen running online.  

In learning all aspects of a language rapidly from a standing 
start, this may be one of the most capable models of 
language learning in existence. The claimed merits of the 
model, and of the underlying theory of language are: 

1. Complete language learning, starting from no 
linguistic knowledge: The model learns all the 
aspects of words and other constructions, including 
word segmentation, productive syntax, and rich 
semantics. It learns these from a standing start of 
no linguistic knowledge. 

2. Working computational model: The model is 
fully implemented, learning with no manual 
supervision. It is available for testing by running it 
on different languages, different learning data sets, 
and so on. 

3. Proof that the model works: Because the model 
has a simple mathematical basis in Bayesian 
inference and learning, it can be proven  that the 
model works [Worden 2022c]. This is an advance 
on models that need experimentation and tuning to 
make them work. 

4. Fast and robust learning: The model learns 
quickly, robustly and accurately – learning all 
aspects of a language needed to understand and use 
it productively. 

5. Agreement with data on first language 
acquisition: the key facts are: (a) fast and robust 
learning; (a) initial learning of single words and 
constructions; (c) later learning of productive 
words; (d) ‘verb island’ learning of individual verbs, 
before learning regular syntax. 

6. Bayesian optimal model of language: The core 
operations of unification and generalisation are 
Bayesian maximum likelihood operations. This is a 
Bayesian model of language learning and 
processing, aligning it with the many empirical 
confirmations of Bayesian cognition [Rao et al 
2003; Chater & Oaksford 2008 ] 

7. Simple mathematical and computational basis: 
In its Bayesian foundations, the model has a simple 
mathematical and computational basis - of feature 
structures, unification, and generalisation. These 
operations fit into a simple algebraic structure, 
underpinning the consistency and wide applicability 
of the model [Worden 2022b, 2022c]. 
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8. General applicability, to learn any language: 
The theorem of language learning, described in 
section 8 and derived in [Worden 2022c], shows 
that in this model of learning, any construction in 
any language can be learnt from a few examples of 
its use.  

9. Requires only modest extension of primate 
cognitive abilities: Language evolved in less than 
about a million years, so it cannot require major 
new cognitive faculties in the human brain – 
because they could not have evolved in only a few 
thousand generations [Worden 1996]. The faculties 
used in this model are all needed to support 
complex primate behaviour and learning [Worden 
1994, 2022b]. Language uses existing primate 
cognitive faculties, with only modest extensions. 

There are very few models of language learning in existence 
which have comparable strengths. This theory should 
therefore merit serious consideration and future testing. 

There are many possible future tests of the learning model, 
such as: 

1. Testing the model with real child language learning 
data, instead of artificially generated learning 
examples 

2. Using the model to learn dialogue pragmatics and 
social uses of language. 

3. Using the model to learn other languages, or larger 
subsets of a language 

Appendix A: Implementation Details 

This appendix describes some parameters and design 
choices of the computational model, which affect its 
performance.  

The model can be run by downloading the model program 
from the demonstration site. The download is a compressed 
zip file with the following contents: 

• An executable java .jar file to run the program 

• A folder of data files which the program uses and 
updates 

• Instructions to run the program 

• The java source code 

To run the learner, you only need to unzip this file, and then 
double-click the .jar file. It is an interactive program, with a 
graphical user interface similar to the web demonstration. 
As in the online demonstration, there is an ‘Auto-Learn’ 
button to run the learner. It uses randomly generated 
learning examples, and gives different results on each run. 

Parameters of the learner are defined in a small file 
‘generator.xml’ which can be edited to test different 
parameter values. The feature structures for words to be 
learned are defined in another data file. The program has a 

graphical editor to create or modify feature structures for 
words, and to save them in a data file. This can be used to 
apply the learner to a different subset of English, or to a 
different language. 

The program includes an object-oriented Java 
implementation of feature structures and the three key 
operations of subsumption, unification and generalisation, 
as defined in [Worden 2022b]. These operations are used by 
the learning framework, to automatically learn words from 
a starting point of no linguistic knowledge. 

Some details of the learning framework: 

1. Generation of Learning Examples: To generate 
the learning examples, a set of words has been 
defined. The sounds, meanings and syntax of word 
feature structures have built with the editor, using 
semantic slots based on the work of Jackendoff [] 
and others. The words are classified into a few 
syntactic categories such as noun, adjective, or 
transitive verb. These categories are used in the 
production rules of a simple grammar to randomly 
generate candidate sentences and phrases. Some 
candidates are rejected, where the words cannot be 
unified because of their semantic constraints (e.g. 
you can only ‘eat’ a thing of type ‘food’). Valid 
candidate sentences are used as learning examples, 
with meanings defined by unifying the words, and 
with duplicate examples removed. 

2. Pre-Linguistic learning of word sound 
segmentation: Using the sounds of 1000 learning 
examples made as in (1), word boundaries are 
learned in two stages. In the first stage, a word with 
sounds such as [b-i-s-k-i-t-]  is inferred to exist, if, 
for any partition of the sounds such as [b-i-s-] and 
[k-i-t], the occurrences of [b-i-s-k-i-t-] cannot be 
accounted for statistically as random coincidences 
of [b-i-s] followed by [k-i-t-]. This criterion reliably 
learns the more frequent words, and does not learn 
any non-words. In the second stage, the common 
words are used to partition the sounds of all 
learning examples; and the remaining sound 
sequences, when they cannot be further 
partitioned, are taken to be words. This two-step 
process learns the sound sequences of nearly all the 
words used to make learning examples, and usually 
learns no more than 1-3 non-words (which are 
typically concatenations of two words)  

3. Distractor Meanings: For a proportion of the 
learning examples, it is assumed that the learner 
does not correctly infer the speaker’s meaning, so 
the true meaning is replaced by a randomly chosen 
‘distractor’ meaning of a different valid utterance. 
Each learning example is presented to the learner 
with one correct meaning and (N-1) distractors. 
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Currently N = 2, so that 50% of meanings are 
distractors. 

4. Extra Meaning Observed by the Learner: When 
the learner correctly infers the speaker’s meaning, 
he or she may observe extra meaning in the 
situation, which was not part of the meaning the 
speaker expressed. This extra meaning is modelled 
as random extra slot values in the feature structure 
for the inferred meaning. An average of 3 extra 
slots are added, to randomly chosen nodes in the 
inferred meaning, with a Poisson distribution of the 
number of extra slots, and with randomly chosen 
slots and slot values. Slot values which would 
conflict with the correct meanings of words in the 
example are not added. 

5. Zero-Knowledge Start: The learner starts with no 
knowledge of the words or their syntactic 
categories. The learner observes only the learning 
examples – which are sounds and inferred meaning 
combined in a feature structure. Sounds occur in 
small phoneme-like units, but because of the pre-
linguistic learning, these can be segmented into 
valid words. The learner only attempts to learn such 
valid words. 

6. Rejecting Distractor Meanings: The learner tries 
to distinguish the correct meaning of each learning 
example from possible distractor meanings. When 
the learner knows some words in an example, the 
learner attempts to parse the example by unifying it 
with the known words, to partly understand it. It 
then chooses the example meaning with best 
aggregate match to the supported word meanings 
(the largest information content in the 
generalisation). When some words are known, this 
is a powerful way to distinguish the correct meaning 
of an example from distractors – typically rejecting 
more than 90% of distractors. When no words are 
known, the learner can only make a random choice, 
with probability 50% of choosing a distractor. 

7. The criterion for starting a new candidate 
word: When two learning examples (which both 
contain the same word) are generalised together to 
make a new candidate word, the resulting feature 
structure has a meaning scene which taken to be the 
meaning of the word, with a small number of extra 
slots arising from random coincidences between 
the examples. If one of the learning examples is a 
distractor rather than the speaker’s intended 
meaning, the information content of the 
generalisation will be very small, and of no use. A 
new candidate word is only started when the 
meaning information content is more than 4.0 bits, 
in the case where both learning examples have 
some known words (which helps to remove 
distractors); or 8.0 bits if one or other example has 

no known words, and so has a 50% chance of being 
a distractor meaning. 

8. The success criterion for refining a candidate 
word: When a new learning example contains a 
candidate word, then the example is generalised 
with the candidate word, in an attempt to refine it. 
This refinement may, for instance, result in the 
removal of a slot value which has occurred by 
coincidence in the previous learning examples for 
the word, but is not part of the meaning of the 
word. However, the generalisation may remove too 
much meaning – particularly if the example 
meaning is a distractor. In that case, the learning 
example is rejected. The criterion for rejection of 
an example is that generalisation with it removes 
more than half the information content of the word 
meaning, or if it removes some subsumption link 
from a productive word. 

9. Permutation Learning: The sequential learning of 
words, using learning examples in the order in 
which they are encountered, works fairly well, 
learning correct feature structures for more than 
50% of words. However, a few words get off to a 
bad start (for instance, from a distractor learning 
example meaning) and then never recover. These 
words can be recognised by a high level of failures 
when refining them by generalisation with further 
learning examples. For those words, the following 
procedure is used: as soon as there are 20 learning 
examples for the word, 40 different candidate 
feature structures for the word are made. Each 
candidate is made by randomly permuting the 20 
learning examples, making and refining the word as 
above. These 40 candidates are split into groups 
having the same learned feature structure (i.e. with 
the same meaning). Only the largest groups, of 10 
or more candidates with the same meaning, are 
retained. The chosen meaning for the word is a 
word taken from one of those groups with the 
highest success rate in refining it. By choosing the 
commonest and most successful word learned 
from sets of randomly permuted learning examples, 
this procedure approximates to Bayesian optimal 
learning from those examples, and gives a high level 
of accurate word meanings. 

10. The criterion for accepting a word as 
‘supported’ (known): This criterion is still the 
subject of experimentation. It might be defined 
from first principles of the Bayesian learning theory 
described in [Worden 2022b], but this has not yet 
been done. Instead, a word is taken as ‘supported’ 
when the proportion its 20 most recent learning 
examples (or all its examples if they are fewer than 
20), which have been used successfully to refine it, 
exceeds a threshold.  
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11. Measuring Information Content: some choices 
made by the automatic learner, such as the criterion 
for success of refining a word by a learning 
example, depend on the information content of 
feature structures. This information content 
depends on the frequencies of occurrence of slots 
and their  values. The information content of each 
slot value is measured from the frequencies of 
occurrence of that value in a sample of 2000 
learning examples – so that the information content 
of feature structures is related to the learning 
examples observed by the learner, It depends on 
the frequency of occurrence of slots, as well as of 
their different values. 

12. Promotion of words to higher productivity: As 
soon as enough words are known in two learning 
examples which share some productive word, to 
unify those words and know the input meaning 
scenes of the word being learned, that word can be 
learnt in its productive form, discovering the 
subsumption links by generalisation. Examples of 
this can be seen in the demonstration. From 
generalising only two learning examples, there may 
be some random extra meaning slots in the word. 
But the same word will have previously been learnt 
in its less productive form, using several learning 
examples. To avoid throwing away this 
information, there is a method to ‘promote’ a word 
to a more productive form, by taking its meaning 
from the less productive form, and taking the 
subsumption links from the latest generalisation of 
learning examples. This speeds up the learning 
process for productive words, and does not alter 
the principle of learning by generalisation. 

13. Preference for ‘thing’ words: In the model, words 
which denote things (such as nouns and pronouns) 
have productivity [0,0]. So in understanding any 
learning example, those words can be unified 
before any other words are unified. However, at the 
early stages of learning, all words have learned 
productivity [0,0], and the learner does not know 
about syntactic categories such as verbs which can 
be promoted to higher productivity. There is a risk, 
for instance, that the learner will treat a verb or an 
adjective (whose eventual productivity is to be [1,0] 
or [0,1]) as a noun, because it has productivity [0,0], 
and may then use known adjectives to promote a 
noun to productivity [1,0], which would be 
incorrect. To reduce this risk, the learner is biased 
to unify words in examples which denote things, 
before unifying other words. Words denoting 
things are recognised  by having higher information 
content in those slots (particularly the slot ‘t_type’) 
which are used to classify things. This ‘thing 
preference’ can be interpreted as a young child 
having an earlier ability to understand words for 

things, before understanding words for actions and 
properties. 

14. Absence of Articles: Articles such as ‘a’ and ‘the’ 
frequently occur just before nouns, and so the 
learner can easily interpret them as part of the 
sound of the noun they precede. To avoid this, I 
have assumed that very young children ignore 
articles in the sounds they hear.  This assumption 
has been relaxed in some runs of the model, with 
the result that… 

15. Memory for Learning Examples: Unlike the 
‘Now or Never’ bottleneck model of learning [], 
this model requires some memory for learning 
examples. It needs to have some memory because  
Bayesian optimal learning cannot be done without 
it. For any word being learnt, the learner is assumed 
to retain at least the last 20 learning examples which 
contain the word, to support the near-Bayesian 
learning described above.  

16. Multiple Senses of Words: The model does not 
yet learn multiple senses of the same word, but it is 
believed that the Bayesian-like learning by random 
permutation of learning examples can be easily 
extended to do this. 
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