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Abstract: 

 

A working Bayesian computational model of language acquisition can be seen online at 
http://www.bayeslanguage.org/demo . The model has fast, robust learning of words – including 
their sound, meaning and syntax. Words and other constructions are learnt as composite feature 
structures. The working and performance of the model is described in a companion paper. This 
paper describes the cognitive, mathematical and computational foundations of the model. 

The model uses tree-like feature structures as a computational implementation of the constructions 
of cognitive linguistics. The operation used by speakers to compose sentences from meanings is 
unification of feature structures. Unification is a Bayesian maximum-likelihood operation - a 
minimisation of Bayesian Free Energy. The operation used to learn words and other constructs is 
generalisation of feature structures. These operations support all language learning and use, from the 
child’s first learning of words and canned phrases, up to productive adult language.  
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1. Introduction 

First language acquisition has been one of the outstanding 
unsolved problems of cognitive science. Children rapidly 
learn their native languages, learning thousands of words 
and complex syntax from unreliable inputs, without explicit 
instruction. There are very few working computational 
models which address the whole process of language 
acquisition, from first words up to productive adult 
capabilities.  

This is the second of three linked papers describing a 
computational which does that, which can be seen at 
http://www.bayeslanguage.org/demo. The model learns a 
fragment of English from a starting point of no linguistic 
knowledge. The papers are: 

1. ‘A computational model of language learning’: 
[Worden 2022a] describes the working and 
performance of the model, and compares it with 
other models of language learning. 

2. ‘A model of language acquisition: Foundations’  
[Worden 2022b; this paper] describes the 
mathematical and computational foundations of 
the model. 

3. ‘A theorem of language learning’ [Worden 2022c]: 
derives a theorem which can be proved in this 
model of language learning, which has important 
consequences for the scope of the model, for 
language diversity and for language change. 

In this model of language, the meanings of words, other 
constructions, and sentences are represented by composite 
feature structures – tree-like data structures with nodes 
representing parts of their meaning. Feature structures are a 
computational implementation of the constructions of 
cognitive linguistics [e.g Langacker 1987, 2008; Fillmore 
1985; Goldberg 1995; Croft 2001; Kay 2002; Sag, Boas & 
Kay 2012; Bybee 2001; Kaplan & Bresnan 1981; Lakoff 
1987; Slobin 1986; Talmy 2000; Hilpert 2014]. Feature 
structures and related structures such as scripts and frames 
have long been used to represent language meanings. This 
model borrows structures from several sources, such as 
Jackendoff [1983, 1991]. However, choosing the best 
semantic representation is not the main focus of the model; 
it can work equally well with different semantic 
representations.  

The model has a semantic layer and a phonological layer, 
but has no intervening abstract syntax layer, as is used in 
generative grammars [Chomsky 1965, 1981, 1995].  

The model uses unification of feature structures for 
comprehension and generation, as has been common in 
computational lingutistics. It uses a uniform procedure for 
language learning at all stages. This procedure is the 
generalisation of feature structures. Examples of language 
learning and use by means of these operations can be seen 
in the online demonstration. 

The computational model is described at Marr’s [1982] 
Level Two, of algorithms and data structures, without a 
neural implementation. It is not a connectionist neural net 
model. 

This model is a Bayesian model of language. Each feature 
structure has an information content, which is a form of 
Bayesian Free Energy. Unification is a minimisation of free 
energy, as in Friston’s [2006,2010] Free Energy Principle. 

This paper describes the mathematical and computational 
properties of feature structures and the operations on them, 
relating them to optimal Bayesian cognition and learning. 
These are the computational foundations of the model 
described in these papers. 

2. Cognitive Foundations of Language 

This model is a cognitive linguistic model, in which language 
is closely related to other human cognitive faculties, and is 
not just an isolated or autonomous module in the brain. 
Before describing the model itself, it is worth describing the 
overall context in the brain, in which the model is situated 
– to give some feeling for the other cognitive faculties which 
language interacts with.  

These other cognitive faculties have not been implemented 
as a computational model. But they could be implemented, 
and they will be described in those terms – at Marr’s Level 
Two, as set of implementable algorithms and logical data 
structures.  The details which follow may not be correct, but 
may be taken as illustrating a possible context for the model 
of language, even if they need to be modified in some places. 
The context for language is based on a simple architectural 
model of the primate brain, shown in figure 1: 

http://www.bayeslanguage.org/demo
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Figure 1: An outline architecture of the primate brain 

Besides the incoming sense data (shown in the bottom box), 
there are three components to this model: 

1. From incoming sense data, the brain constructs a 
fairly precise geometric representation of the 
locations the animal’s body and the things around 
it. 

2. There is also an object representation of current 
reality, which differs from geometric representation 
in ways described below. 

3. The brain also has memory for the properties and 
dynamics of objects. 

The main evidence for (1) - a precise geometric 
representation of local physical reality  - is our conscious 
awareness, which consists largely of a faithful geometric 
representation of our bodies and our surroundings in the 
current moment, derived from sense data. Conscious 
awareness can only arise from some brain activity, involving 
fairly precise geometric representation of locations. In order 
to plan and execute complex physical movements, primates 
need to know the precise spatial dispositions of the things 
around them. The geometric representation supports the 
recognition of things and the planning and control of bodily 
movements. 

Many aspects of this geometric representation are not yet 
known – not least of which is the unsolved problem of 
neural representation of the 3-D positions of many objects, 
with the high precision and high temporal resolution which 
primate brains achieve. It is not necessary to solve those 
problems here; but it is possible that the 3-D geometric 
representation of current reality is stored in the thalamo-
cortical system. 

The ‘object network’ representation of reality (2) overlaps 
strongly with the geometric representation  (1), but has 
other capabilities to represent many kinds of object and 
their behaviour. In keeping with a description at Marr’s 
Level two, the term object is used here in the sense of 

object-oriented programming (OOP) [Jacobsen et al 1992], 
which has been one of the most important developments in 
computing practice in recent years. 

A computing ‘object’ may or may not represent a physical 
object. In OOP, the term ‘object’ denotes a composite 
package of information and behaviour, with defined 
interfaces to other objects. For instance, the primate brain 
must somehow represent a concept like ‘insect’; this object 
is composite, in that it has linked parts (legs, head, wings, 
and so on), it holds information about each part, and it can 
simulate behaviours such as locomotion. Primate brains 
need to use these composite information objects to 
compute about insects or other things around them. 

The object representation of reality (2) differs from the 
geometric representation (1) in the following ways: 

• Many objects have a composite structure of wholes 
and parts. 

• Objects may represent not only current physical 
reality, but other facts such as social reality (e.g. 
kinship links), or links to past and future events, 
such as recent history or potential for action 

• Objects are linked to one another in a rich network 
of relationships, including physical relations and 
more abstract relations, many of which have a 
graded ‘strength’ such as a probability. 

• Objects are classified into classes of objects that 
have been experienced before; the future behaviour 
of each object can be simulated using the learned 
behaviour of its class. 

• Some classes of object inherit much of their 
information and behaviour from more general, 
superordinate classes, as in OOP. 

• The object model represents reality as a symbolic 
network of nodes, each node having its own 
properties (here called ‘slots’). Each composite 
object is itself a network of nodes, and the objects 
are linked in a larger network. 

• While the symbolic object representation is more 
flexible than any geometric representation, it is 
more schematic and probably consumes fewer 
neural resources. 

The key role of the object model of reality is to simulate the 
animal’s body and surroundings in possible ‘what if‘ 
scenarios for planning actions. 

All these differences have obvious uses in the primate brain. 
They are the reasons to believe that the primate brain 
contains an object network representation of reality – 
because without it, primates could not do the complex 
things they do. 

The object model relates to important concepts in cognitive 
linguistics, notably: 
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1. Langacker’s [1987, 1991] detailed discussions of the 
semantics of language are descriptions of 
capabilities in the object layer, and how they 
interface to language. 

2. The ‘simulation semantics’ of Embodied Cognitive 
Grammar (ECG) [Feldman 2006, Bergen & Chang 
2013] recognises that the target of language 
understanding is not just a static symbolic structure, 
but an embodied simulation of reality. 

Composite objects in the object network can be represented 
by composite feature structures – tree-like structures of 
nodes and slots, with cross-links between the trees, 
representing associations between the objects. 

The object network can be envisaged as a network of 
computing objects (data and behaviour) on the surface of a 
pond. These objects have links not just to one another, but 
also to deeper layers of the pond. These layers are the more 
detailed neural representations in individual cognitive 
domains (such as smell or sound) many of which underlie 
conscious experience.  The geometric model of space is one 
of these deeper layers. 

Much of the power of the object network comes from the 
classifications of objects into classes with typical properties 
and expected behaviour – component (3) of the 
architecture. The creation of classes of object in component 
(3) depends on learning. Primates need to have a way of fast 
learning of composite objects – learning the class for a 
composite structure from experiencing only a small number 
of examples of the class. There is evidence for the fast 
learning of composite structures in primates. 

Physically, components (2) the object network, and (3) the 
object memory are probably not distinct in the brain, but 
both reside in neo-cortex. 

If this architecture is a high-level picture of our primate 
cognitive heritage, what extra ingredients are required for 
human language? I suggest that one extra capability is 
required. This is the ability of humans to recognise a 
‘common ground’ between speakers [Tomasello 2003], as 
shown in figure 2: 

 

 

 

Figure 2: Architectural components supporting a conversation 

 

The left and right sides of the diagram repeat the three 
previous components of primate cognition, for two people 
in conversation. 

The new and uniquely human capability is the ability of each 
of the conversants to represent the common ground – (the 
central box) which is simply a subset of his or her own 
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object network, which is recognised as being shared with the 
other person. 

The basic step for placing some object in the common 
ground is a pre-conscious inference such as: ‘he can see that 
thing; so it is a part of our common ground.’   

Because the common ground is a subset of each person’s 
object network, it is itself an object network. It is a network 
of connected objects, each object being represented by a 
feature structure, and linked to other objects. The objects in 
the common ground can be roughly divided into objects 
representing physical things, and objects representing social 
reality. 

The feature structures of language are based on the objects 
in the common ground, and more broadly in the object 
layer. Language consists of a set of operations on the 
common ground. Typical uses of language are to pick out 
some object in the common ground; to add to its 
description; to link it to other objects; or to add new objects. 

The capabilities which are used to do these things are 
denoted in the top two boxes - feature structures, 
unification and generalisation.  

Those capabilities exist already in the primate object 
network and memory. As will be described in section 6, 
primate brains need to store composite feature structures; 
to combine them by maximum-likelihood unification; and 
to learn them by generalisation. 

3. Feature Structures, Unification and 
Generalisation 

A feature structure is an information structure which has 
multiple nodes, connected in a graph (typically a tree or 
directed acyclic graph, or DAG) by links, or edges. 

• Each node may hold several pieces of information 
(here called slots), of different modalities, 
depending on the domain. A typical slot is ‘colour 
= @red’, or ‘size = @large’, etc. Names for slot 
values are preceded by ‘@’. 

• The edges carry information, which may be 
domain-specific – for instance ‘time delay = 5 
seconds ±3 seconds’, or ‘displacement = 5 cm left’ 
or ‘relationship = sibling’ or ‘node A is parent of 
node B’ 

The information held in nodes and edges has levels of 
uncertainty. Depending on the information in nodes and 
edges, and its uncertainty, each feature structure has an 
information content, denoted as B bits. 

Feature structures have a model-theoretic semantics [Kay 
2002], in that each feature structure represents a set of 
possible situations in the world. If a feature structure has 
information content B, then the set of situations it 
represents has probability approximately 2-B. This underpins 

the relationship between feature structures and Bayesian 
models of cognition. In terms of the Free Energy Principle, 
[Friston 2006, 2010] the free energy of a feature structure is 
its information content B. 

A primary relation between feature structures is the relation 
of subsumption: 

A feature structure A subsumes another feature structure B, 
(written as A > B) if and only if all the information that is 
contained in A is also contained in. B. 

Structurally, all the nodes, slots, and edges in A must also be 
in B; and B may have extra nodes, slots and edges. Any 
information in A must also be in B, so that B has equal or 
higher information content than A. 

In terms of the model-theoretic semantics of feature 
structures, any situation in the world which is described by 
B is also described by A; but not necessarily the reverse. The 
set of situations described by B is a subset of the set 
described by A, and has smaller probability than the set 
described by A. 

Subsumption can be used to define the main operations on 
feature structures, of unification and generalisation. 

The unification C of two feature structures A and B 
(written as C = A U B) is the feature structure with smallest 
possible information content which satisfies both A > C and 
B > C. 

The information content of C satisfies: 

1. I(C) ≥ I(A) 
2. I(C) ≥ I(B) 
3. I(C) < I(A) + I(B) 

There is an algorithm to compute C from A and B. This is 
to match pairs of  nodes from A and B, trying to get the 
maximum match of information on the paired nodes, while 
respecting the constraints of the edges. The result retains all 
the shared nodes, and all the unmatched nodes which come 
from either A or B, allowing no contradictions. Hence the 
result (if it exists) contains all the information in A, and all 
the information in B. The best match of nodes maximises 
the amount of information in C which is not duplicated, 
coming from both A and B. So it minimises the information 
content of the result, and so minimises the free energy. 

Unification may involve both discrete optimisation 
(choosing matching nodes) and optimisation of continuous 
varables (such as distances). For language, unification is 
mainly a discrete optimisation, of finding the best pairing 
between nodes of two structures with discrete slot values. 

The model-theoretic interpretation of unification is as 
follows: Any situation described by C is also described by A, 
and is described by B. The set of situations described by C 
has the highest probability (lowest information content) of 
situations described by both A and B. 
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Thus C describes the maximum likelihood set of situations 
consistent with both A and B. Unification is an operation of 
maximum likelihood inference.  Put another way, 
unification is an operation of scene construction, which 
constructs the most likely scene, or most likely model of the 
world, given A and B. Unification is the core operation of 
Bayesian scene construction [Mirza et al 2016], in any 
domain. 

We can use this to describe how animals apply knowledge, 
once it has been learned. Suppose an animal has learned 
some cause-effect regularity, of the form (Cause => Effect). 
This can be paraphrased as ‘if the current situation matches 
the cause, then the effect is likely to follow’. Both the cause 
and the effect can be expressed as feature structures, and 
can be combined as a single rule feature structure R – with 
a left-hand ‘cause’ branch and a right hand ‘effect’ branch. 

Then the rule is applied by trying to unify the rule R with 
the current situation S. If the ‘cause’ branch of R matches S, 
then the effect branch of R predicts what will happen – and 
because of the Bayesian model semantics of feature 
structures, it is a maximum likelihood prediction of what 
will  happen – which will give the animal greatest fitness. A 
rule R will not unify with the current sitation S if there is any 
contradiction between them. Then the rule will not apply. 

Unifying the current situation S with learned rules R enables 
brains to construct a maximum-likelhood (and thus, 
maximum fitness), model of the world. 

Subsumption is also used to define the operation of 
generalization, which plays a central role in learning new 
rules R.  

The generalisation D of two feature structures A and B 
(written as D = A ∩ B) is the feature structure with largest 
possible information content which satisfies both D >A and 
D > B. 

The information content of D satisfies: 

1. I(D) ≤ I(A) 
2. I(D) ≤ I(B) 

There is an algorithm to compute D from A and B, which 
is similar to that used to compute the unification C. To 
compute D = A ∩ B, you again match pairs of  nodes from 
A and B, trying to get the maximum match of information 
on paired nodes, while respecting the constraints of the 
nodes and edges. For generalisation, you retain only the 
matched nodes, slots and edges – and throw away any parts 
of A and B which are not matched. The best match of nodes 
maximises the amount of information in D. 

There is a complementary relationship between the 
unification C = A U B and the generalisation D = A ∩ B. 
Because of this complementarity, there is an approximate 
relation  between information contents: 

I(C)  + I(D) = I(A) + I(B) 

The operations of unification and generalisation fit together 
in an algebraic structure, or feature structure algebra. 
Typical relations of this algebra are: 

A ∩ B = B ∩ A 

A U (A ∩ B ) = A 

A U (B U C) = (A U B) U C 

A U (B ∩ C) = (A U B) ∩ (A U C) 

Some of these relations are not exact, but can be used in 
practice. They underpin the self-consistency of feature 
structure operations. The relations mirror the relations of 
set theory, because each feature structures denotes a set of 
situations in the world. 

A fundamental aspect of the feature structures used for 
language is the presence of subsumption links [Worden 
1997] which are the key to the productivity of language. 
Learning and using subsumption links is what sets human 
language apart from most animal learning and conditioning. 

Suppose that a feature structure A has nodes a1, a2, ... There 
is another feature structure B with nodes b1, b2 …, and A 
subsumes B; this is written as A > B. 

The nodes of A and the nodes of B can be put in 
correspondence with one another: (a1=> b1) , (a2=> b2) … 
(an=> bn), for every node an,  and the subsumption relation 
must apply separately to each node pair and their 
descendant subtrees: an > bn.  This implies that if an is a leaf 
node of A, bn can have an arbitrary extra subtree of 
descendant nodes bx, and still the relation A > B will hold. 

That describes the case where A has no subsumption  links 
in it – the case we have been discussing so far. Now suppose 
that A has a subsumption link between two of its nodes. A 
subsumption link has a start node (say, an) and an end node 
(say, ap). In the online model , these links are written as 
curved grey lines; here we write a subsumption link as  
an ~ ap. 

The link can only be only valid if an subsumes ap; i.e. if an > 
ap. So ap must have the same or more information as an;  
Furthermore, the overall subsumption relation A > B can 
only hold if, for the nodes bn and bp which correspond with 
an and ap, bn > bp. If an and ap are leaf nodes and have a 
subsumption link, the corresponding subtrees bn and bp 
cannot each be extended arbitrarily, independent of one 
another. Any extensions must obey the relation bn > bp. 

That defines the effect of subsumption links like an ~ ap on 
the subsumption test A > B. As described above, the 
operations of unification and generalisation are defined in 
terms of the subsumption  test (if C = A U B, then A > C 
and B > C; and if D = A ∩ B, then D > A and D > B). The 
same definitions hold in the presence of subsumption links. 
The impact of subsumption links on these two operations 
is then: 
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• In forming the unification C = A U B, if there is a 
subsumption link an ~ ap, this results in the sharing 
of information between the result nodes  
cn = an U bn and cp = ap U bp. 

• In forming the generalisation D = A ∩ B, if the 
relations an > ap and bn > bp both hold, then the 
result has a subsumption link dn ~ dp.  

Generalisation discovers subsumption links, even when 
they are not in the inputs; and unification uses subsumption 
links to ‘pipe’ information between the linked nodes, in both 
directions. These properties are built into the algorithms 
used in the online model. 

Learning the feature structures for language by 
generalisation discovers the subsumption links which make 
language productive. 

Generalisation has some similarities to the operations of the 
Structure Mapping Engine (SME) [Falkenhainer Forbus & 
Gentner 1989; Forbus, Ferguson, Lovett & Gentner 2017] 
– although the main focus of SME is on analogical 
reasoning [Gentner 2003]. Operations similar to 
generalisation have been built into some models of language 
learning, such as the ’model merge’ operation of [Bailey et 
al 1997], and the model of [Beekhuizen et al 2014]. 

4. Optimal Bayesian Learning Theory 

The central result of Bayesian learning theory is simple and 
can be stated as follows: as soon as the evidence for some 
regularity in the environment is statistically significant (and 
no sooner) that regularity can be learned [Anderson 1990; 
Worden 1995,1997]. 

This implies that the number of training examples needed 
to learn some regularity can be very small; so that if animal 
brains are nearly Bayesian, they can learn regularities from 
small numbers of training examples. This result, which 
agrees with extensive data on associative conditioning and 
other forms of learning, differs from the much slower rates 
of learning of neural net models [Rumelhart & McLelland 
1986; LeCun et al 2015], which typically require many 
thousands of training examples. 

The speed of Bayesian learning can be illustrated by the 
example of a biased coin. Suppose a coin is biased, and gives 
heads on 80% of tosses. How many tosses will it take to 
learn that the coin is biased, if most coins are unbiased? 
When the coin has been tossed 20 times, it will have given 
heads approximately 16/20 times. Then, there is only a 1% 
chance (posterior probability) that it is unbiased; so, there is 
statistically significant evidence that the coin is biased. The 
bias can be learned from a small number of tosses. 

To apply this to animal learning or language learning, we 
take the case of two events (called s and m) which may or 
may not be correlated with one another in the environment. 

In a series of trials, each trial has one of four outcomes with 
probabilities:  

 

a = P(s & m) 

b =P(s & not m)  

c = P(not s & m) 

d = P(not s & not m). 

where (a+b+c+d) = 1. 

The frequencies of these outcomes will reveal any 
correlation, positive or negative, between s and m.  

As the number N of trials grows larger, the probability P of 
any specific sequence such as acdbca.. grows exponentially 
smaller with N. The graph of ln(P) against N approximates 
to a descending straight line, with negative slope: 

d lnP/dN = a ln(a) + b ln(b) + c ln(c) + d ln(d) 

We can re-express a..d in terms of conditional probabilities: 

w = P(s) 

x  = P(m|s) 

y = P(m|not s) 

If there is no correlation between s and m, then x = y. In 
that case we can show: 

d lnP/dN =  (a+b) ln(a+b) + (a+c) ln(a+c)  

+ (c+b) ln(c+b) + + (c+d) ln(c+d) 

This is the negative slope of lnP which is expected if there 
is no correlation. If there is any correlation between s and 
m (positive or negative), the negative slope of the correlated 
line is less than the uncorrelated slope, as shown in the 
figure: 

 

Figure 3: If there is a correlation between two events s and m, the 
evidence for that correlation becomes statistically significant after a 
small number of learning examples. The prior probability of any rule 
is small, so the blue line starts lower than the red ‘no rule’ line’. But 

ln(P)

Examples

0 few

No rule

Rule

(animals) (neural nets)

thousands



8 
 

the blue correlated line gives a better account of the learning examples, 
so it has a smaller slope than the red line. When the blue line overtakes 
the red line, evidence for the rule is statistically significant. Slopes of the 
lines are given by elementary probability theory. The vertical axis is a 
log probability, or negative free energy 

This shows the logarithm of the probability (negative free 
energy) of a sequence of examples, as the sequence extends. 
When there have been no examples, the prior probability of 
any correlation between s and m is small; thus the ‘rule’ line 
starts below the ‘no rule’ line.  

After the two lines have intersected, the evidence for the 
rule is statistically significant- enough to believe the rule, in 
spite of its prior probability being lower than ‘no rule’. At 
this point, a regularity can be learnt. The rule is the most 
likely (minimum free energy) account of the sequence of 
events. 

It is in principle not possible to learn a correlation between 
events s and m any faster than this – because before the two 
lines intersect, any apparent correlation between s and m 
might just be a statistical fluke.  

If there is only a weak correlation between the two events, 
the two lines have similar slopes, and it takes many examples 
before they intersect. More typically, the lines intersect 
rapidly, after a small number of examples. 

This theory applies to the learning of word feature 
structures is as follows: The event s is the occurrence of the 
sound of a word in a learning example, and the event m is 
the occurrence of its meaning in the inferred meaning of the 
example. The word combines the sound and the meaning in 
a single feature structure, which has information content Is 
bits in its sound part, and Im bits in its meaning part. 

The total information content of the feature structure is I = 
(Is+Im), so the prior probability that it is a part of the 
language is approximately 2-I. In the graph above of ln(P) 
against N, at the zero intercept when N = 0, the ‘rule’ line 
is lower than the ‘no rule’ line by approximately I bits. 

However, the word sound s and its meaning m are strongly 
correlated in the learning signal, so the the two lines have 
different slopes. After a small number of learning examples 
which include the word, the two lines intersect, and the 
word can be learnt. 

The application of feature structure generalisation to word 
learning is described fully in  [Worden 2022c], and a brief 
summary is given here. 

Suppose that an utterance is produced by unifying a number 
of word feature structures W, X, Y…, in some order of 
unification; and that utterance is used as a learning example 
L. Then L and its meaning part both obey 

L = (W U (X U (Y U..)))) 

This implies that the meaning of each word W is part of the 
meaning of L; so W subsumes L: 

W > L. 

Suppose that the same word W is used in a number of 
learning examples Li , for i = 1,2,… This implies that  

W > Li  for i = 1,2,... 

Now make the generalisation G of the learning examples: 

G = ((L1 ∩ L2) ∩ L3) ∩ .. 

The properties of generalisation and subsumption then 
imply that 

W > G 

This means that G contains all the information in W, and 
may contain other information (in defined slot values). The 
extra information in G arises from coincidental similarities 
between the learning examples Li, and as more examples are 
added, this extra information soon falls away. So G is a good 
approximation to the feature structure of the word W. 

This analysis can be extended to the learning of general rules 
(such as: ‘all verb past tenses end in -ed) and special 
exception rules (such as: ‘goed’ is not a word). Then the 
diagram of figure 11 above would have three intersecting 
lines, for ‘no rule’ ‘general rule’ and ‘special rule’. Learning 
the special rule depends on the token frequency of 
sentences containing ‘go’; whereas learning a general rule 
depends on the type frequency of verbs like ‘go’ and 
others. The course of learning depends on the relationship 
between these frequencies, in complex ways. 

Bayesian learning theory predicts that words can be learnt 
by generalising learning examples together; and that if this 
is done in an optimal Bayesian learning framework, any 
word can be learnt from a fairly small number of examples. 
However, the model of these papers does not yet implement 
an optimal Bayesian learner, and doing so might be difficult. 

The model uses an approximation to optimal learning, 
called permutation learning. Suppose there is a set of 
learning examples Li which all use some word W. The word 
is learnt by generalising those examples in some order: 

G = ((L1 ∩ L2) ∩ L3) ∩ .. 

On some occasions, the generalisation does not produce a 
result with significant meaning, because the learning 
example might be a distractor meaning, rather than  the 
speaker’s true meaning – the word sound occurs without the 
word meaning. These examples must be rejected from the 
generalisation, by some criterion of the resulting 
information content. Whatever the criterion, it is a tradeoff, 
and it may sometimes reject good learning examples.  Hence 
the result of generalisation depends on the order of 
generalisation. 
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Serial generalisation, in the order in which the examples are 
encountered, is one possibility; but it does not always work 
well, as a word may sometimes get off to a bad start, and 
then not recover to the correct meaning. 

Permutation learning works by making random 
permutations of the learning examples, and then forming 
candidate words by generalising the examples in the order 
of each permutation. The candidate words are put into 
groups with the same word meaning. For instance, for 40 
random permutations of 20 learning examples, there are 
usually only 1 or 2 large groups of 10 or more candidate 
words with the same meaning. It is then possible simply to 
choose the largest group (the meaning which occurs most 
frequently), or to apply other criteria of quality – such as 
how many learning examples are matched successfully. 

So given a set of learning examples, permutation learning 
tries out a number of different ways of combining the 
examples, and chooses the best resulting word. This is an 
approximation to Bayesian optimal learning from those 
examples. In the language learning model, it works well. 

5. Feature Structures in the Primate Brain 

There are several contexts where primate cognition requires 
the use of composite data objects: 

1. Perceiving a complex multi-part object – sensing 
only some parts of the object, and filling in other 
parts from known properties of its class. 

2. Planning a novel sequence of movements, using 
known constraints on movement, and making 
choices dynamically as the sequence unfolds 

3. Doing the sequence of actions for some common 
daily activity, such as arranging bedding, or finding 
food, or tool use. 

4. Negotiating a social situation, involving issues such 
as kin, rank and dominance, over extended 
timescales. 

5. Navigation in a region of known territory. 

Each of these requires computation with composite data 
objects – which may be represented (at Marr’s level 2) as 
multiple connected nodes, each node having defined 
property values. That is, it requires computing with feature 
structures.  

Primates have been under sustained selection pressure for 
many of millions of years, to do these computations very 
well. It is a reasonable hypothesis, and is supported by 
observation, that they do it almost as well as it can be done. 

In all these situations there is potentially a large degree of 
uncertainty. Optimal computation under uncertainty 
requires a Bayesian estimation of the posterior probabilities 
of different outcomes. When a situation is partly described 
by several feature structures, the single feature structure 
which best describes the situation is found by a Bayesian 

optimal computation, which (as in section 3) is the 
unification of the feature structures which give the partial 
descriptions. So the primate brain needs to compute with 
feature structures by unification. 

Some of the feature structures involved are long-lived 
feature structures stored in the object memory. They are 
created by learning, and there has been sustained selection 
pressure to make that learning as fast as possible. We know 
from associative conditioning experiments that many kinds 
of learning happen approximately as fast is they can happen, 
as defined by the Bayesian theory of learning [Anderson 
1990]. 

So it is reasonable to suppose that in primates, the learning 
of composite feature structures is done at the speeds defined 
by Bayesian learning theory. This requires the learnt feature 
structures to be made by generalisation of feature structures 
for learning examples, because the generalisation of a set of 
feature structures contains the largest amount of common 
information which they share. 

So there are sound empirical reasons to suppose that 
primate brains: 

1. Use composite feature structures for cognition in 
several domains 

2. Compute with feature structures by unification 
3. Learn feature structures as fast as they can be 

learned, using generalisation. 

This implies that the main computational capabilities 
needed for this model of language and language learning 
evolved in the primate brain, before human language.  

6. Feature Structures in Language 

While these papers are about language learning, rather than 
language use, we need to describe the computations 
supporting language use –  to know what the child needs to 
learn, and how it is then used. The description of language 
use which follows can be illustrated by examples in the 
online model. 

The feature structure for a typical word ‘eats’ is shown 
below, in the form displayed by the online model: 
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Figure 7: feature structure for the word ‘eats’ – which embodies its 
sound, its syntax and its semantics 

 

 The feature structure for a word embodies its sound, its 
syntax, and its meaning. The word sound is contained in the 
yellow ‘sound’ nodes (which in the figure, have been merged 
into one node for simplicity of display.) 

The orange scene subtree at the bottom embodies the 
meaning of the word ‘eats’ – a scene in which an act of 
eating is happening in the present moment, with an agent 
(the eater) and a patient (the food). These are both shown 
as subordinate ‘thing’ nodes below the ‘scene’ node. 

The syntactic constraints of the word ‘eats’ are shown in the 
two top orange ‘scene’ nodes, which identify the agent and 
the patient. When understanding a sentence, these scene 
nodes will have been made before ‘eats’ is unified, by 
unifying nouns and noun phrases. The slots define 
constraints on the agent and patient: 

• The eater must be singular (‘they eats’ will not 
unify) 

• The eater must be a person (maybe the language 
learner has never seen an animal eating) 

• The eater must be able to be an agent (‘him eats’ 
will not unify) 

• The patient must be of type ‘food’ 

The curved grey lines in the diagram are subsumption links. 
These convey meanings (slot values and subordinate nodes) 
from the input ‘agent’ and ‘patient’ meaning scenes into the 
final ‘act’ meaning scene – which then contains all the 
information in the eating situation. 

To understand the sentence ‘Fred eats a banana’, you first 
unify the word feature structures for ‘Fred’, ‘banana’ and ‘a’. 
This creates the agent and patient meaning scenes, and 
implies that the word ‘eats’ cans now unify – because its 

input nodes (meanings and sounds) are all present, and their 
slots have values compatible with the feature structure for 
‘eats’. Unifying ‘eats’ produces the full final meaning scene 
– of a person called Fred eating a banana. 

 You can run through this example of language 
understanding, and other examples, step by step in the 
online model. 

Language understanding starts with a feature structure 
consisting entirely of sound nodes, and successive 
unifications grow the structure by adding meaning nodes, 
until there is a meaning node giving the meaning of an entire 
sentence.  

Language generation is the reverse of language 
understanding. Generation starts with a single orange 
meaning scene and subtree, containing the meaning to be 
expressed. Successive unifications add yellow sound scenes, 
until there are sounds of all the words to be said. In the final 
‘Hide’ view of generation, only the sound nodes can be seen.  

The same word feature structures are used for generation as 
for understanding. Unification with words can either add 
sounds to existing meanings (for language generation), or 
add meanings to existing sounds (for understanding).  

In the online model, the sentence generation can be 
demonstrated step by step for any sentences or fragments 
of sentences in the ‘Sentences’ menu.  

7. Prospects for Neural Implementation 
of Feature Structures and Language 

This model of language and language learning has been 
defined at Marr’s [1982] Level Two – the abstract level of 
algorithms and data structures which can be implemented 
on a digital computer. It has not been implemented at Marr’s 
Level Three, of neural implementation. 

We can ask about the potential for modelling a neural 
implementation of feature structures and their operations. I 
am not aware of any neural-level models of composite 
feature structures. We may list some of the things required 
of a neural implementation: 

1. Dynamic Representation of Feature Structures: 
A feature structure is an open-ended multi-sensory 
data structure with connected nodes in a tree of 
unlimited depth, with an open-ended set of slots 
and values on any node, and some cross-links. It 
seems unlikely that the links between nodes in a 
feature structure can be represented by static neural 
connections; or that slots and their values could be 
represented by neural firing rates with fixed 
meanings. 

2. Dynamic Combination of Feature Structures: It 
is often necessary to unify or generalise a feature 
structure with any other. So it seems unlikely that a 
feature structure could be neurally implemented at 
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any static location in the brain – without the ability 
to move it dynamically to where it can combine 
with other feature structures. 

3. Fast discrete node matching: Unification and 
generalisation are both discrete optimisation 
processes, searching a discrete space of possible 
pairings between the nodes of two feature 
structures. This requires fast exploration of the 
different possible node pairings, to find the 
Bayesian maximum likelihood fit. 

4. Associative retrieval of feature structures: When 
we hear a sentence, we effortlessly retrieve a few 
word feature structures from the many thousands 
of words that we have learned, using their sounds. 
To produce speech, we rapidly retrieve a few word 
feature structures based on their meanings. Both 
these require fast associative retrieval of feature 
structures. 

5. Fast Learning: Any feature structure needs to be 
learned rapidly, from only a few examples of its use. 
In this respect, a neural net model of learning would 
be much too slow. 

This is a very demanding set of requirements, and it is no 
surprise that no neural model of computation has yet come 
close to meeting them. Yet we know that as we have 
language, nature must be able to do it somehow. Most of 
these capabilities are required not only for language, but also 
for fast complex inference and learning, as seen in many 
primate species.  

It appears that  we need to abandon the traditional approach 
to the neural modelling of cognition, which is to say  that a 
neural firing rate represents some fixed kind of information 
- some fixed type of information. This may work for sensory 
processing, where sense data has fixed type of information 
content – but it will not work for dynamic. multi-sensory 
feature structures. For those, it appears that neural firing 
rates must represent both data and metadata. Metadata is 
‘data about data’ and can take a great variety of forms – such 
as ‘what does a firing rate mean?’ or ‘what kind of processing 
is required?’. 

There are very few models of neural information processing 
in which neural firing rates represent metadata as well as 
data. Unfortunately, even if such neural models can be 
devised theoretically, it may be very hard to test them 
experimentally. However, the rapid plasticity of cortical 
regions seems to imply that neural assemblies can be rapidly 
reconfigured to new tasks, possibly by changes of incoming 
metadata. 

There are two lines of work which may be pointers towards 
a neural implementation of feature structures: 

A. The Free Energy Principle [Friston 2006, 2010] has 
been the source of neural level implementations of 
Bayesian optimal processing, so may be a starting 

point. I am not aware of any applications of the 
FEP to complex tree-like feature structures; and the 
Bayesian optimisation done in FEP applications is 
usually a search in a space of continuous variables, 
rather than a discrete matching as is required for 
unification. 

B. Work in Embodied Cognitive Grammar (ECG) 
[Feldman 2005; Bergen & Chang 2013] has 
explored neural implementations of models which, 
at Marr’s Level Two, are similar to the feature 
structure model of this work. They have explored 
neural implementations of unification [] and 
learning operations similar to generalisation [Bailey 
et al 1997].  

 

8. Evolution of the Capacity for 
Language 

As described in section 6 of this paper, the computational 
capacities needed to support language – composite feature 
structures, with their operations of unification and 
generalisation -  are needed for primate cognition, and so 
could have been present in the human brain before 
language. This is fortunate, because a speed limit for 
cognitive evolution [Worden 1995] implies that there can 
only have been a small amount of new genetic design 
information in our brains since we diverged from other 
great apes. There could not have been sufficient new brain 
design in that period to support fundamental new 
capabilities  such as feature structures with unification and 
generalisation. 

As described in section 2, the main innovation  in the human 
brain may have been our tendency to cooperate, and our 
ability to recognise a ‘common ground’ of understanding 
with another human. These extra capacities are sufficient to 
support language learning and language use. 

There remains a large question: why is the communication 
capability of language so remarkably powerful, compared 
with the capabilities of any other species? To list some 
aspects of its power: 

• We have huge vocabularies, up to 50,000 words 

• There is almost no limit to the range of topics we 
can talk about 

• We can communicate and understand complex 
ideas within seconds 

• We can pack unlimited meanings into a single 
sentence, using complex nested syntax 

• We learn language in childhood, without effort or 
coaching 

• We convey meanings quickly by many linguistic 
short-cuts 
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In these respects, language appears to be much more 
powerful and fast than would be needed to serve any 
purpose related to survival in our natural habitat. Language 
is over-engineered. 

If our capability for language had evolved to help us in 
hunting, or gathering food, or finding shelter or caring for 
loved ones - all of which take place over timescales of 
minutes or more - then something much slower and less 
powerful than modern human language would have 
sufficed. We could speak in slow, simple sentences, using 
only a few hundred words, taking several minutes to express 
any meaning. We would not need all the short-cuts, speed, 
and expressive power of language. The benefits in fitness of 
these extra features are marginal. 

Feldman [2006] has written (echoing a consensus) that: 
‘Everyone agrees that expressive language conveys very significant 
evolutionary advantages for groups that can use it’. On the contrary, 
there is evidence that over long periods, language has not 
brought any significant evolutionary advantage.  

Mankind has had the cognitive and physical traits needed 
for language for at least several hundred thousand years 
(perhaps for as long as a million years ago, when cooking 
was invented, enabling us to digest enough to support larger 
brains). For the great majority of that time, homo sapiens has 
been a marginal species in Africa – even passing through a 
single female ‘genetic Eve’ about 300,000 years ago; and 
possibly also passing through a geographically restricted 
‘aquatic phase’. So mankind nearly did not make it; language 
has not enabled us to dominate the planet. Our domination 
has only happened in the last 10,000 years, since the dawn 
of agriculture and complex societies. 

On the basis of habitat-related selection pressures, one 
would not expect the human capacity for communication so 
far to exceed that of chimps, who have lived in similar 
habitats as mankind for millions of years. This presents a 
puzzle. Because language seems to be so massively over-
engineered for any survival-related purpose, natural 
selection does not account for language. 

Whenever a species has a trait which is unique to that 
species, and which is exaggerated beyond any natural need, 
it may be a sign that the trait evolved by sexual selection. In 
fact any species-specific trait is most likely to be the result 
of sexual selection, because sexual selection is the only 
selection pressure which differs markedly between closely 
related species in the same habitat. Think of birds’ plumage, 
or flowering plants. 

Humans differ from other primate species not only in 
language, but also in our larger brains and greater general 
intelligence. This suggests that the whole package of greater 
intelligence and language may have evolved together, by 
sexual selection. 

The theory of sexual selection [Lande 1981; Maynard Smith 
1982] shows how sexual selection leads to traits which: 

1. Evolve rapidly, by runaway positive feedback 
between the sexes 

2. Are arbitrary and species-specific 
3. Are exaggerated beyond any habitat-related need, 

to a point where they decrease overall fitness 
4. Are a real handicap to the individual (acting as an 

'honest signal' of fitness to potential mates) 

Miller [2000] has given extensive evidence that human 
intelligence evolved by sexual selection. Our large brains 
show all the hallmarks of sexual selection - such as rapid 
evolution, species-specificity,  and exaggeration beyond the 
point of greatest fitness, to the point of being a handicap to 
individuals – for instance, in the huge energy requirements 
of the brain, increased size of the birth canal, and extended 
period of parental care. 

Sexual selection cannot occur without display of the sexually 
selected traits; in order to drive selection, those traits must 
be visible to potential mates. So if there is sexual selection 
for greater general intelligence, there must be ways to 
display intelligence to potential partners.  

If we could only display intelligence by making a better 
spear, or by cooking a tastier rabbit, or by carving a better 
statue, that would be a slow and inefficient form of display. 
Language is something we can rapidly display at any time of 
the day, addressing any topic. As such, it is the most efficient 
available display of intelligence. So sexual selection for 
intelligence includes sexual selection for language. 

The best way to display your intelligence to a potential 
partner is to tell them something they do not know, relating 
it to what they already know. For you to know what they 
know, they must be able to tell it to you in a cooperative 
dialogue - and you must be able to infer what they know 
from what they say.  

So to act as the best display for intelligence, language must 
involve: 

• Mind-reading, to know what the other person 
knows and does not know 

• Cooperative dialogues, to exchange knowledge and 
build up a sustained context for the mutual display 
of intelligence 

• Complex syntax and large vocabulary, to express 
complex ideas quickly 

• Language abilities which are symmetric between 
the sexes, to facilitate dialogues with potential 
mates. 

In this picture, therefore, language is a kind of courtship 
dance for the mutual display of intelligence. Fluency in 
conversation is a sexually selected trait. 
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Sexual selection accounts for facts that other accounts of 
the evolution of language do not account for: 

• That language evolved so rapidly, in less than two 
million years 

• That it allows us to communicate so fast, conveying 
complex messages within seconds - much faster 
than we need to for survival purposes 

• That it has such elaborate syntax and lexicon - more 
complex than is needed to convey most meanings 

• That it constitutes an evolutionary discontinuity 
between mankind and the great apes 

• For most of the period during which we have had 
language, it has not made us fitter – mankind has 
only just survived to the present day. 

These factors are consistent with fast complex language as 
a competitive sexual asset, attractive to both sexes, and used 
for the display of intelligence - as it appears to be today. 

9. Discussion 

This is the second of three related papers, describing a 
working computational model of language acquisition. This 
paper has described the cognitive and mathematical 
foundations of the model. 

It first described the broad foundations, in the cognitive 
capacities which we share with other great apes, which are 
required for language. Key amongst these is an object model 
of current reality, used by primates to simulate and plan 
complex physical actions. This object model is the basis of 
the simulation semantics of embodied cognitive grammar 
[Feldman 2006]. 

The object model must be able to represent, compute with, 
and learn composite multi-node data structures. It must do 
so in the face of uncertainty, in a Bayesian optimal manner. 
This leads to a requirement for the objects to be composite 
feature structures, which are unified for optimal Bayesian 
inference, and are generalised for optimal Bayesian learning. 

This lays the computational foundations of the model of 
language and language learning – in feature structures, 
unification and generalisation. Because of their Bayesian 
foundation, these operations fit together in a simple 
mathematical structure – an algebra – which underpins the 
model. This leads to a theorem of language learning, which 
implies that the model can learn any construction, in any 
language. That theorem is the subject of the third paper in 
the series [Worden 2022c]. 

Finally, this paper discussed the question of why language 
has evolved only in mankind, but not in other great apes, 
which have similar cognitive capabilities – and why language 
is so remarkably powerful and over-engineered. A possible 
answer is that language evolved through sexual selection, as 
a means to display greater intelligence to potential mates.  

This answer accounts for many features of language, which 
other theories of language evolution do not explain. 
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