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Overview

* These slides accompany a working model of language learning, that
can be seen running at http://www.bayeslanguage.org/demo/

* The model is described in three papers:
1. A Computational model of language learning
2. A Model of Language Learning: Foundations
3. A Theorem of language Learning

* These slides are a summary of the papers.

 The model is very capable (fast, accurate, complete [anguage
learning), because it has a simple mathematical basis.


http://www.bayeslanguage.org/demo/

(1) A Model of Language Learning

Core Principles:

* Defined at Marr’s Level 2 — algorithms and data structures (it is not a
connectionist model).

* A Cognitive Linguistics Model (no autonomous syntax layer).
Constructions = Feature Structures

* A Bayesian model (unification and generalisation are Bayesian
maximum likelihood operations)

e Speakers and Listeners have a ‘Common Ground’ of mutual
understanding of the current context



Core Learning Mechanisms

e Utterances are produced and understood by unifying feature
structures, for words and other constructions (sounds and meanings)

* Learning examples are utterances, with their inferred meanings,
represented as feature structures

* Word feature structures are learnt individually, by generalising
learning examples containing the same word

* Generalisation and Unification are complementary operations; that is
why learning works.

* Learning is approximately Bayes-optimal - done by permuting learning
examples before generalisation



Running the Model

e http://www.bayeslanguage.org/demo/

* 40 English words are used to generate
learning examples - short utterances, with
meanings inferred by the learner

* Press the ‘Auto-Learn’ button, to run a cycle
of 100 learning examples
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Performance of the Model

e Learns 40 words from 800 learning
examples (as children do)

* Word meanings are accurate (most
words agree 100% with the words
used to make the learning examples)

* The model learns productive syntax
* Fast execution (runs in a few seconds)
e Robust - no fine tuning of parameters

* Will work for any language (not yet
tested)
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Learning Word Segmentation

* Learning starts before infants understand meanings

e Statistical properties of sounds are used to learn word boundaries:

* Phase 1: a sequence of sounds ‘biskit’ is a word if there is no partition of its sounds
(e.g. ‘bis’, ‘kit’) which would have made its occurrences by coincidence (this criterion
finds the more common words)

* Phase 2: Use common words to partition learning examples. The remaining sounds
are words, if they cannot be partitioned further.

* This works well for the 40-word sample of English

* This may not be the best or only model for learning word segmentation;
but it shows that there is enough information in the learning signal to learn
word boundaries (even without using intonation)



Other Computational Models of Language Learning

* There are very few computational models which can learn all aspects of a
language from a standing start. Two such models are:

e Beekhuizen et al. [2015, 2017]:

* Constructions are like feature structures

e Understanding uses operations similar to unification
* Learning uses operations similar to generalisation

* Predicts ‘verb island’ learning (like this model)

 Abend et al. [2017, 2019]:
e Learns a probabilistic Combinatorial Categorial Grammar (CCG)
» 3 sets of probability parameters: SYNTAX, MEANING, and WORDS
* Bayesian optimisation of all parameters
* Predicts fast learning of regular grammar (?)



(2) Foundations of the Model

Architecture of the primate brain

* Geometric model of space: from
sense data, precise geometry, may
reside in thalamo-cortical system

* Object network: Used for
understanding, simulation and
planning actions (what happens
next?)

* Object memory: learnt classes of
objects with their behaviour

* Like the ‘Simulation Semantics’ of
Embodied Cognitive Grammar
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‘Common Ground’
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Cognitive Linguistics

* From the 1970s, many authors developed non-transformational
approaches to parsing: Unification—Based Grammars (Gazdar, Kaplan
& Bresnan, Pollard & Sag...). Many of these were built as computer
models.

* At the same time, several authors developed cognitive models of
language semantics (Croft, Fillmore, Lakoff, Langacker, Talmy,...)

* These converged to form Cognitive Linguistics:
e Language overlaps with other cognitive faculties
* All language consists of Constructions (pairings of meaning and sound)
e There is no separate autonomous syntax layer
* A key fact is the huge diversity of languages (Evans & Levinson 2013)



Constructions = Feature Structures

* Tree-like Feature Structures have a long history in language research

* A construction is a pairing of form and function (Goldberg): sound and meaning

(Subsumption links are
curved lines, or arrows).

They are the key to
productive language.
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action scene of going,
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(doing the action)

(equivalent)

Tree notation (this model)

8. A V- ("V minus") phrase, a phrase of the type (cat V)(max -),
consists of a lexical verb together with some or all of its non-subject
complements or augments. I say "some or all" because some of them
may be present at some distance from the V- constituent, just in case it
is in topic or WH-phrase position. A non-maximal verb phrase built
around the verb REMOVE, and incorporating all of its local, i.e., non-
subject complements, is illustrated in Figure 8.

(cat V)
(max -)
(cat V) ‘ (cat N) | | (cat P)
(min +) (max +)| [ (max +)
(lex REMOVE)
valence
GF: |subj [obj jcomp (Cﬁ-t P E:na;xﬂ))
SR: |agt | thm|source (min +)
MS: | N+ | N+ | Plyron] (lex FROM)
s o e —
N
\ )

Figure 8

Nested box notation (Fillmore
1988, Langacker, Croft, Kay 2002)




Unification = Bayesian Maximum Likelihood Inference

* Any feature structure represents a set of situations in the world
* This is the model-theoretic semantics of feature structures (Kay 2002)
* Tree structures give an unlimited space of meanings
* A hyper-dimensional conceptual space (Goldberg 2019)

If a feature structure has | bits of information in its slots, then the probability of
the set of situations it represents is approximately 2.

The unification of two features (written as C = A U B) is the smallest feature
structure which contains both A and B as sub-structures

* Unification combines A and B by matching nodes, keeping all nodes

. Un(;fic)ation tries to minimise the information content of C (best match between A
and B

* This maximises the likelihood of the set of situations described by C

 Unification is Bayesian Maximum Likelihood Inference (= Minimisation of Free
Energy — Friston 2010)



Unification and Generalisation

* The generalisation of two features (written as D = A N B) is the largest
feature structure which both A and B contain as sub-structures

* Generalisation combines A and B by matching nodes, throwing away
nodes that do not match

e Generalisation tries to maximise the information content of D — the
largest commonality between A and B

* Generalisation and unification are complementary operations
* This leads to many algebraic relations between them (like set theory)
* This underpins the coherence of the learning model



The Bayesian Theory of Learning

 Animals learn rapidly from noisy data — In(P)
how do they do it?

* It depends on an optimal Bayesian No rule
Theory of Learning

* This theory defines the minimum

number of training examples you need Rule
to learn any regularity (Anderson 1990; :
Worden 1995) ! Examples
* The number of examples required to 0 few thousands
learn is usually very small
* Learning is robust against ‘noise’; it (animals) (neural nets)
needs only a statistical correlation to
learn.
* For learning feature structures, Zero Intercept = Logs of Bayesian priors.
generalisation finds the most predictive
rule possible

Height of lines = Logs of Bayesian posterior probabilities.

Learning strength = difference between the two slopes;
it depends on the strength of the correlation between
events.



Evolution of the Capacity for Language

Primates have tree-like feature structures:
* To simulate what happens next
* To plan complex physical actions
* For social intelligence (Worden 1996)

* Primates need to have the operations on feature structures used for language:
* Unification - for Bayesian maximum likelihood inference, to simulate events
* Generalisation — for Bayesian fast learning

* So why do other primates not have language? Why only us?

* Language is massively over-engineered for any survival purpose; most primates do not need it.
* Very fast
* Huge vocabulary
* Unbounded productivity

* Mankind went through a period of intense sexual selection for
* General intelligence (Miller 2000)
* Language ability (Worden 2017)

* We need to converse (better than other people) to get a mate
* Language is the Peacock’s Tail of the human brain



(3) A Theorem of Language Learning

* Unification and generalisation form a simple mathematical structure, like set
theory. In this structure, we can prove:

Through learning and use, any construction will replicate faithfully through the generations.

* This result is:
* Universal - it applies to any set of constructions (meaning-sound pairs)
* Applicable to any language
* Underpins the durability, diversity, and power of languages (Evans & Levinson 2013)

* Analogy with DNA replication:
* Replication of DNA is a faithful chemical process
e Universal: it works for any sequence of base pairs
* Underpins evolution and the diversity of all life

* The evolution of constructions (such as words) is a model of language change
e Regular grammar arises from word evolution
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Consequences of the Theorem

* Languages are not constrained by the theorem — they can contain any possible
construction:
* This underpins the remarkable diversity of the world’s languages (Evans & Levinson 2013)

* |t shows that the feature structure model can apply to any language:
e Children can learn any construction at all without limit, initially in its unproductive form
* Then they incrementally learn it with greater productivity

* Constructions are accurately preserved by replication:

* Constructions can have consistent definitions across a speaking community — to serve their
communicative purpose

* Constructions can be refined over many generations, to better serve the needs of society
* Constructions are subject to strong selection pressures, which lead to language change
e Constructions, not languages, are the ‘species’ of language evolution



Evolution of Constructions, as Language Change

* The idea that language evolves is as old as the idea of biological evolution
itself (Darwin)

e Today, it is very influential (e.g. Christiansen & Chater 2016; see Dediu et al.
2013 for an authoritative review.)

e Evolution is the dominant metaphor for historic language change
* |In most discussions, ‘a language’ is taken as the evolving species

* The ‘language as species” metaphor is often an unnoticed background
assumption.

* In this model, the evolving species is not a language. Each construction is
an evolving species. A language is like an ecology.

* This alters the terms of the discussion:
* e.g. what would be the ‘design space’ for an ecology? (Dediu et al 2013)



Selection Pressures on Constructions

* Each construction (e.g. each word) is subject to strong selection pressures — often
from other constructions in its language ecology.

* Each construction must get used, in order to be heard and to reproduce:
* It must have a useful meaning, which is not better expressed by other constructions
* It must be brief, while not creating intolerable ambiguities

 Ifit can combine productively with other constructions, that will greatly increase its range of
use (= fitness)

* If different variants of the construction are related systematically, following other
constructions (e.g. tenses of a regular verb) it is easier to learn.

* These selection pressures give a simple account of many prominent features of
languages:
Productivity of many constructions

Partial semantic regularity (e.g. alighment of S/V verbs, spatial terms -Talmy 2000, Bowerman
& Choi 2003)

Partial syntactic regularity
Language universals (Greenberg 1963, Hawkins 1994, Worden 2002)
Language universals are not universal (Evans & Levinson 2013)



