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Overview

• These slides accompany a working model of language learning, that 
can be seen running at http://www.bayeslanguage.org/demo/

• The model is described in three papers:
1. A Computational model of language learning

2. A Model of Language Learning: Foundations

3. A Theorem of language Learning

• These slides are a summary of the papers.

• The model is very capable (fast, accurate, complete language 
learning), because it has a simple mathematical basis.

http://www.bayeslanguage.org/demo/


(1) A Model of Language Learning

• Defined at Marr’s Level 2 – algorithms and data structures (it is not a 
connectionist model). 

• A Cognitive Linguistics Model (no autonomous syntax layer). 
Constructions = Feature Structures

• A Bayesian model (unification and generalisation are Bayesian 
maximum likelihood operations)

• Speakers and Listeners have a ‘Common Ground’ of mutual
understanding of the current context

Core Principles:



Core Learning Mechanisms

• Utterances are produced and understood by unifying feature 
structures, for words and other constructions  (sounds and meanings)

• Learning examples are utterances, with their inferred meanings, 
represented as feature structures

• Word feature structures are learnt individually, by generalising
learning examples containing the same word

• Generalisation and Unification are complementary operations; that is 
why learning works.

• Learning is approximately Bayes-optimal - done by permuting learning 
examples before generalisation



Running the Model

• http://www.bayeslanguage.org/demo/

• 40 English words are used to generate 
learning examples  - short utterances, with 
meanings inferred by the learner

• Press the ‘Auto-Learn’ button, to run a cycle 
of 100 learning examples

• Word feature structures are learnt by 
generalising learning examples

• After each cycle, the model lists the words 
learnt

• Show the learnt feature structure for any 
word

• Replay the process used to learn it from 
examples

http://www.bayeslanguage.org/demo/


Performance of the Model

• Learns 40 words from 800 learning 
examples (as children do)

• Word meanings are accurate (most 
words agree 100% with the words 
used to make the learning examples)

• The model learns productive syntax

• Fast execution (runs in a few seconds)

• Robust - no fine tuning of parameters

• Will work for any language (not yet
tested)
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Cycles (100 examples)

Accuracy (%)

Level of support



Learning Word Segmentation

• Learning starts before infants understand meanings

• Statistical properties of sounds are used to learn word boundaries:
• Phase 1: a sequence of sounds ‘biskit’ is a word if there is no partition of its sounds 

(e.g. ‘bis’ , ‘kit’) which would have made its occurrences by coincidence (this criterion 
finds the more common words) 

• Phase 2: Use common words to partition learning examples. The remaining sounds 
are words, if they cannot be partitioned further.

• This works well for the 40-word sample of English

• This may not be the best or only model for learning word segmentation; 
but it shows that there is enough information in the learning signal to learn 
word boundaries (even without using intonation)



Other Computational Models of Language Learning

• There are very few computational models which can learn all aspects of a 
language from a standing start. Two such models are:

• Beekhuizen et al. [2015, 2017]:
• Constructions are like feature structures
• Understanding uses operations similar to unification
• Learning uses operations similar to generalisation
• Predicts ‘verb island’ learning (like this model)

• Abend et al. [2017, 2019]:
• Learns a probabilistic Combinatorial Categorial Grammar (CCG)
• 3 sets of probability parameters: SYNTAX, MEANING, and WORDS
• Bayesian optimisation of all parameters
• Predicts fast learning of regular grammar  (?)



(2) Foundations of the Model

• Geometric model of space: from 
sense data, precise geometry, may 
reside  in thalamo-cortical system

• Object network: Used for 
understanding, simulation and 
planning actions (what happens 
next?)

• Object memory: learnt classes of 
objects with their behaviour

• Like the ‘Simulation Semantics’ of 
Embodied Cognitive Grammar
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‘Common Ground’ in Language
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Cognitive Linguistics

• From the 1970s, many authors developed non-transformational 
approaches to parsing: Unification–Based Grammars (Gazdar, Kaplan 
& Bresnan, Pollard & Sag...). Many of these were built as computer 
models.

• At the same time, several authors developed cognitive models of 
language semantics (Croft, Fillmore, Lakoff, Langacker, Talmy,…)

• These converged to form Cognitive Linguistics:
• Language overlaps with other cognitive faculties
• All language consists of Constructions (pairings of meaning and sound)
• There is no separate autonomous syntax layer
• A key fact is the huge diversity of languages (Evans & Levinson 2013)



Constructions = Feature Structures
• Tree-like Feature Structures have a long history in language research

• A construction is a pairing of form and function (Goldberg): sound and meaning

Tree notation (this model) Nested box notation (Fillmore 
1988, Langacker, Croft, Kay 2002)


(Subsumption links are 
curved lines, or arrows).
They are the key to 
productive language.

(equivalent)



Unification = Bayesian Maximum Likelihood Inference

• Any feature structure represents a set of situations in the world
• This is the model-theoretic semantics of feature structures (Kay 2002)
• Tree structures give an unlimited space of meanings
• A hyper-dimensional conceptual space (Goldberg 2019)

• If a feature structure has I bits of information in its slots, then the probability of 
the set of situations it represents is approximately 2-I.

• The unification of two features (written as C = A U B) is the smallest feature 
structure which contains both A and B as sub-structures

• Unification combines A and B by matching nodes, keeping all nodes

• Unification tries to minimise the information content of C (best match between A 
and B)

• This maximises the likelihood of the set of situations described by C

• Unification is Bayesian Maximum Likelihood Inference  (= Minimisation  of Free 
Energy – Friston 2010)



Unification and Generalisation

• The generalisation of two features (written as D = A ∩ B) is the largest 
feature structure which both A and B contain as sub-structures

• Generalisation combines A and B by matching nodes, throwing away 
nodes that do not match

• Generalisation tries to maximise the information content of D – the 
largest commonality between A and B 

• Generalisation and unification are complementary operations

• This leads to many algebraic relations between them (like set theory)

• This underpins the coherence of the learning model



The Bayesian Theory of Learning

• Animals learn rapidly from noisy data –
how do they do it?

• It depends on an optimal Bayesian 
Theory of Learning

• This theory defines the minimum 
number of training examples you need 
to learn any regularity (Anderson 1990; 
Worden 1995)

• The number of examples required to 
learn is usually very small

• Learning is robust against ‘noise’; it 
needs only a statistical correlation to 
learn.

• For learning feature structures, 
generalisation finds the most predictive 
rule possible

ln(P)
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No rule
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Learning strength = difference between the two slopes; 
it depends on the strength of the correlation between 
events.

Zero Intercept = Logs of Bayesian priors.

Height of lines = Logs of Bayesian posterior probabilities.



Evolution of the Capacity for Language

• Primates have tree-like feature structures:
• To simulate what happens next
• To plan complex physical actions
• For social intelligence (Worden 1996)

• Primates need to have the operations on feature structures used for language:
• Unification  - for Bayesian maximum likelihood inference, to simulate events
• Generalisation – for Bayesian fast learning

• So why do other primates not have language? Why only us?

• Language is massively over-engineered for any survival purpose; most primates do not need it.
• Very fast
• Huge vocabulary
• Unbounded productivity

• Mankind went through a period of intense sexual selection for
• General intelligence (Miller 2000)
• Language ability (Worden 2017)

• We need to converse (better than other people) to get a mate

• Language is the Peacock’s Tail of the human brain



(3) A Theorem of Language Learning
• Unification and generalisation form a simple mathematical structure, like set 

theory. In this structure,  we can prove:

• Through learning.. 

• This result is:
• Universal - it applies to any set of constructions (meaning-sound pairs)
• Applicable to any language
• Underpins the durability, diversity, and power of languages (Evans & Levinson 2013)

• Analogy with DNA replication:
• Replication of DNA is a faithful chemical process
• Universal: it works for any sequence of base pairs
• Underpins evolution and the diversity of all life

• The evolution of constructions (such as words) is a model of language change

• Regular grammar arises from word evolution

Through learning and use, any construction will replicate faithfully through the generations. 
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This is the basis of the 
theorem – which you can see 
working in the model.

Unification and generalisation 
complement one another.



Consequences of the Theorem

• Languages are not constrained by the theorem – they can contain any possible 
construction:
• This underpins the remarkable diversity of the world’s languages (Evans & Levinson 2013)

• It shows that the feature structure model can apply to any language:
• Children can learn any construction at all without limit, initially in its unproductive form
• Then they incrementally learn it with greater productivity

• Constructions are accurately preserved by replication:
• Constructions can have consistent definitions across a speaking community – to serve their 

communicative purpose
• Constructions can be refined over many generations, to better serve the needs of society
• Constructions are subject to strong selection pressures, which lead to language change
• Constructions, not languages, are the ‘species’ of language evolution



Evolution of Constructions, as Language Change

• The idea that language evolves is as old as the idea of biological evolution 
itself (Darwin)

• Today, it is very influential (e.g. Christiansen & Chater 2016; see Dediu et al. 
2013 for an authoritative review.)

• Evolution is the dominant metaphor for historic language change
• In most discussions, ‘a language’ is taken as the evolving species
• The ‘language as species’ metaphor is often an unnoticed background 

assumption.
• In this model, the evolving species is not a language. Each construction is 

an evolving species. A language is like an ecology.
• This alters the terms of the discussion:

• e.g. what would be the ‘design space’ for an ecology? (Dediu et al 2013) 



Selection Pressures on Constructions

• Each construction (e.g. each word) is subject to strong selection pressures – often 
from other constructions in its language ecology. 

• Each construction must get used, in order to be heard and to reproduce:
• It must have a useful meaning, which is not better expressed by other constructions
• It must be brief, while not creating intolerable ambiguities
• If it can combine productively with other constructions, that will greatly increase its range of 

use (= fitness)
• If different variants of the construction are related systematically, following other 

constructions (e.g. tenses of a regular verb) it is easier to learn.

• These selection pressures give a simple account of many prominent features of 
languages:
• Productivity of many constructions
• Partial semantic regularity (e.g. alignment of S/V verbs, spatial terms -Talmy 2000, Bowerman 

& Choi 2003)
• Partial syntactic regularity
• Language universals (Greenberg 1963, Hawkins 1994, Worden 2002)
• Language universals are not universal (Evans & Levinson 2013)


